PHY 5246: Theoretical Dynamics, Fall 2015
November $23^{\text {rd }}, 2015$
Assignment \# 12
(Graded problems are due Wednesday December 2 ${ }^{\text {nd }}$, 2015)

1 Graded problems

1. 1.a) For a one-dimensional system with Hamiltonian

$$
H=\frac{p^{2}}{2}-\frac{1}{2 q^{2}},
$$

show that there is a constant of motion given by

$$
D=\frac{p q}{2}-H t
$$

1.b) As a generalization of part 1.a), show that for a motion in a plane with the Hamiltonian

$$
H=|\mathbf{p}|^{n}-a r^{-n}
$$

where \mathbf{p} is the vector of the momenta conjugate to the Cartesian cordinates, there is a constant of motion given by

$$
D=\frac{\mathbf{p} \cdot \mathbf{r}}{n}-H t
$$

1.c) The transformation $Q=\lambda q, p=\lambda P$ is obviously canonical. However, the same transformation with t time dilatation, $Q=\lambda q, p=\lambda P, t^{\prime}=\lambda^{2} t$, is not. Show that, however, the equations of motion for q and p for the Hamiltonian in part 1.a) are invariant under this transformation. The constant of motion D is said to be associated with this invariance.
2. Given a system with Hamiltonian

$$
H=\frac{1}{2}\left(\frac{1}{q^{2}}+p^{2} q^{4}\right)
$$

2.a) find the equation of motion for q;
2.b) find a canonical transformation that reduces H to the Hamiltonian of a harmonic oscillator. Show that the solution for the transformed variables is such that the equation of motion found in part 2.a) is satisfied.
3. 3.a) Show that the transformation

$$
Q=p+i a q, \quad P=\frac{p-i a q}{2 i a}
$$

with a a real constant, is canonical and find a generating function.
3.b) Use the transformation to solve the linear harmonic oscillator problem.

