
PHY 5246: Theoretical Dynamics, Fall 2015

Assignment # 10, Solutions

1 Graded Problems

Problem 1
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First we calculate the moments of inertia:

I1 = I2 = m

(

a2

4
+
b2

12

)

,

I3 =
ma2

2
.

(1.a)

The torque is zero! This can be seen in several ways: for
instance, from the definition of the torque and the force
of gravity Fa = mag we can see

N =
∑

a

ra × Fa =
∑

a

mara × g.

Here ra is defined with respect to the center of mass
since that is the axis about which we want to calculate
the torque. However, since the center of mass vector ~R

is defined such that

R =

∑

amara
∑

ama
= 0,

we see that
∑

amara = 0 and so N = 0.

(1.b)

Euler’s equations are
{ I1ω̇1 − (I1 − I3)ω2ω3 = 0
I1ω̇2 − (I3 − I1)ω3ω1 = 0

I3ω̇3 = 0

{ ω̇1 − I1−I3
I1

ω3ω2 = 0

ω̇2 +
I1−I3
I1

ω3ω1 = 0

ω̇3 = 0

The last equation implies ω3 is constant, and is just the projection of ~ω onto the x3 axis-

ω3 = ω cosα =
ωb√

b2 + 4a2
.



Now to solve for ω1 and ω2, we can rewrite the first two equations as
{

ω̇1 + Ωω2 = 0
ω̇2 − Ωω1 = 0

, where Ω =
I3 − I1
I1

ω3.

Taking another derivative of the first equation with respect to time and inserting the second
equation we find

ω̈1 + Ωω̇2 = 0 −→ ω̈1 + Ω2ω1 = 0,

which has solution ω1(t) = A cos(ωt+ δ), so that means ω2(t) = A sin(Ωt+ δ). Since the phase is
the same we can set δ = 0 and our full solution is

{ ω1(t) = A cos(Ωt)
ω2(t) = A sin(Ωt)
ω3(t) = ωb√

b2+4a2
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Thus we have that ~ω precesses in a cone around x3 with angular
frequency

Ω =
I3 − I1
I1

ω3

=

ma2

2
−m

(

a2

4
+ b2

12

)

ma2

4
+ mb2

12

ωb√
b2 + 4a2

=
3a2 − b2

3a2 + b2
ωb√

b2 + 4a2

This also tells us what our constant A should be:

A = ω1(0) = ω sinα =
2aω√
b2 + 4a2

.

(1.c)

The kinetic energy will be
T = T

(CM)
trans + T

(about CM)
rot ,

with

T
(CM)
trans =

1

2
m(V0 − gt)2

T
(about CM)
rot =

1

2
I1(ω

2
1 + ω2

2) +
1

2
I3ω

2
3

=
1

2
m

(

a2

4
+
b2

12

)

A2 +
1

2

ma2

2
ω2
3

=
1

2
m

(

a2

4
+
b2

12

)

4a2ω2

b2 + 4a2
+

1

2

ma2

2

ω2b2

b2 + 4a2

=
1

2
m

a2ω2

b2 + 4a2

(

a2 +
b2

3
+
b2

2

)

=
1

2

ma2ω2

b2 + 4a2

(

a2 +
5

6
b2
)

.



Adding these together we find

T =
1

2
m(V0 − gt)2 +

1

2

ma2ω2

b2 + 4a2

(

a2 +
5

6
b2
)

.

Problem 2

For vertical motion, we have θ = 0 so that ω3 = φ̇+ ψ̇ and

pφ = pψ = I3ω3.

The energy is simply

E =
1

2
I3ω

2
3 +Mgh,

and since ω3 is constant we can define the conserved quantity

E ′ =Mgh = E − 1

2
I3ω

2
3.

In order to study the nature of the θ = 0 equilibrium position, we now study how the system
(top) behaves when it’s displaced by an angle θ. For an arbitrary displacement about θ = 0 we
can then write:

E ′ =
1

2
I1ω

2
1 +

1

2
I2ω

2
2 +

1

2
I3ω

2
3 +Mgh cos θ

=
1

2
I1θ̇

2 +
p2ψ(1− cos θ)2

2I1 sin
2 θ

+Mgh cos θ =Mgh,

where I1, I2, and I3 are the principal moments of inertia relative to the a body system with origin
at the (fixed) tip of the top, and we have used that I1 = I2, as well as

ω1 = φ̇ sin θ sinψ + θ̇ cosψ ,

ω2 = φ̇ sin θ cosψ − θ̇ sinψ .

Also, we have expressed the φ̇ component of the angular velocity as a function of the pφ and pψ
constants of the motion, which, for the initial conditions given in this problem, satisfy pφ = pψ =
I3ω3 (see initial discussion):

φ̇ =
pφ − pψ cos θ

I1 sin
2 θ

=
pψ(1− cos θ)

I1 sin
2 θ

.

We can then recast the energy equation in the form,

Mgh(1− cos θ) =
1

2
I1θ̇

2 +
p2ψ(1− cos θ)2

2I1 sin
2 θ

,

which is well defined even at θ = 0. Using the change of variables, z = cos θ (so that ż = − sin θθ̇)
and solving the above equation for ż we get:

Mgh(1− z) =
1

2
I1

ż2

sin2 θ
+
p2ψ(1− cos θ)2

2I1 sin
2 θ

=
1

2
I1

ż2

1− z2
+
p2ψ(1− z)2

2I1(1− z2)

→ ż2 =
(1− z)2

I21

[

2MghI1(1 + z)− I23ω
2
3

]

.



-400

-200

 0

 200

 400

-1  0  1  2  3  4

f(
z)

z

z3z’3

r=2
r=1

r=0.6

Figure 1: A plot of the function f(z) given below. For simplicity we have set the parameter
ξ = 150 and given three values of the ratio r = ω2

3/ω
2
c . Note that r = 1 is the critical case.

For clarity, let us rewrite the equation in the following form,

ż2ξ = (1− z)2[(1 + z)− 2r] ≡ f(z) ,

where r = ω2
3/ω

2
c and

ξ =
2I21
I23ω

2
c

,

with critical frequency ωc given by,

ωc ≡
2

I3

√

MghI1 .

The function f(z) is plotted in the figure for three values of r: r < 1, r = 1, and r > 1,
corresponding to three different values of ω3: ω3 < ωc, ω3 = ωc, ω3 > ωc. The three zeros of the
function f(z) (solutions to ż2 = 0) are values of z such that the motion is stationary (stable or
turning point), since they correspond to θ̇ = 0. We can see that the equation has two zeros at
z = 1 and a third zero at z = 2r − 1 such that,

• z > 1 (unphysical) corresponds to r > 1, i.e. ω3 > ωc;

• z < 1 (physical) corresponds to r < 1, i.e. ω3 < ωc.

We can therefore describe the motion of the top as following:

• for ω3 ≥ ωc the top spins vertically (θ = 0 is the only allowed position;

• for ω3 < ωc the top spins nutating between θ = 0 and θ = arccos(2r − 1).



If the top is set to spin vertically (θ = 0) with ω3 ≥ ωc it will be stable, otherwise it will nutate. In
the presence of friction, even if the top is started vertically with ω3 > ωc, friction will eventually
reduce its angular velocity until it drops below ωc and the top starts nutating. When friction is
very low the top can spin vertically for a long time before nutations set in (case of a sleeping top).



Problem 3
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The center of mass in the fixed coordinates is

CM = (l, l, 2l),

and for this setup we have

~ω =
1√
6
(1, 1, 2) · ω

= ω · n̂, where

n̂ =
1√
6
(1, 1, 2).

(a)

Since ~ω is constant (in both the fixed frame and the body
frame since we have

(

d~ω

dt

)

fixed

=

(

d~ω

dt

)

body

.

From the symmetry of the problem we can tell that
I1 = I2 6= I3 (symmetric top). We can calculate these

explicitly:

I1 =
∑

α

mα(y
2
α + z2α) =

8
∑

α=1

m(y2α + z2α)

= 8m(l2 + 4l2) = 40ml2

I2 =
∑

α

mα(x
2
α + z2α) = 40ml2

I3 =
∑

α

mα(x
2
α + y2α) = 8m(l2 + l2) = 16ml2

I12 = −
∑

α

mαxαyα = m(l2 + l2 − l2 − l2 + l2 + l2 − l2 − l2) = 0

Where the other off-diagonal elements vanish similarly. Thus,

Î =





40ml2 0 0
0 40ml2 0
0 0 16ml2





Since the angular velocity is constant, this is not a force-free motion, since we know that the
angular velocity of a symmetric top in the absence of forces precesses about the fixed direction of
the angular momentum. Indeed the angular momentum is not constant in the fixed frame. We
have that:

~Lbody = I1ω1ê1 + I2ω2ê2 + I3ω3ê3

=
1√
6
ωml2(40, 40, 32)

=
8√
6
ml2ω(5, 5, 4) = constant.



See the figure for this vector. Therefore;

(

d~L

dt

)

fixed

= ~ω × ~L,

and we see explicitly that ~L is not constant in the fixed frame. In that this force tells us that ~L

precesses about the direction of ~ω. We can also see that

~L · (ê3 × ~ω) = ~L · (−ω2ê1 + ω1ê2) = −(I1 − I2)ω1ω2 = 0.

So, both ~L and ê3 precess about the direction of ~ω, keeping in the same plane with respect to
each other and with respect to ~ω.

(b)

We can use Euler’s equations, observing that in this frame ω̇1 = ω̇2 = ω̇3 = 0, giving

N1 = −(I2 − I3)ω2ω3

N2 = −(I3 − I1)ω3ω1

N3 = −(I1 − I2)ω1ω2

From this we find

N1 = −(40− 16)ml2ω2 2√
6
= −8ml2ω2

N2 = −(16− 40)ml2ω2 2√
6
= 8ml2ω2

N3 = 0

⇒ ~N = 8ml2ω2(−1, 1, 0).



Problem 4

l

~ω

α
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O

In this problem the body axes are the principal axes, and ~ω can
move in the the body fixed frame. It’s easy to see that the plane is
a symmetric top. Therefore, in absence of forces ~L will be constant
and ~ω will precess around it.

Let us calculate the moments of inertia explicitly:

I1 = I2 = ρ

∫ l/2

−l/2
dx

∫ l/2

−l/2
dy x2 = ρ

1

3

2l3

8

l

2
2

=
ml2

12

I3 = ρ

∫ l/2

−l/2
dx

∫ l/2

−l/2
dy (x2 + y2) =

ml2

6
.

Now at t = 0,

~ω =

(

ω sinα√
2

,
ω sinα√

2
, ω cosα

)

,

and the angular momentum is

~L = (I1ω1, I2ω2, I3ω3) =
ml2

12

(

ω sinα√
2

,
ω sinα√

2
, 2ω sinα

)

.

The velocity with which ~ω precesses about ~L is (see discussion in class and in the text):

Ωpr =
L

I1
,

where

L = (I1ω
2
1 + I2ω

2
2 + I3ω

2
3)

1/2 =
ml2ω

6

[

sin2 α

8
+

sin2 α

8
+ cos2 α

]1/2

=
ml2ω

12
(1 + 3 cos2 α)1/2.

And so the frequency of precession is

Ωpr =
(ml2ω/12)(1 + 3 cos2 α)1/2

ml2/12
= ω(1 + 3 cos2 α)1/2.


