PHY 5246: Theoretical Dynamics, Fall 2015

November 16", 2015

Assignment # 11, Solutions

1 Graded problems

Problem 1
1.a)

The Lagrangian is
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Using our class discussion and Goldstein § 8.1 we can find
a = 0,
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Thus we see that
H=T+V=F,

as expected. Hamilton’s equations of motion are
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If ps(0) = 0 then py(t) = 0 for all times (since py, = 0 from the equations of motion). Then the
equations of motion become
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Thus if ¢(0) = 0 — ¢(t) = 0 at all times, and the motion is planar (in the ¢ = 0 plane) as we
would expect. Given the initial conditions, it will be in the ¢ = 0 plane. The (r,p,) and (0, py)
sets of equations reduce to the usual equations for central-force motion:
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1.b)

0 = Lo — py = mr2, Ponseryed. )
Po = 0 pg=0— mr(rf+26) = 0 = mag = 0.

So we have that py = [ is the magnitude of the angular momentum, and from py = 0 we get
Newton’s second law in the @ direction. For the radial part:
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Taking a derivative of the first equation and plugging it into the second equation we find
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So we find this set of equations gives us Newton’s 2nd law in the radial direction.



1.c)

For the specific case of F(r) = —E#, since this is a
conservative force with no constraint we already know
y that
H=T+U=F,
for constant E. From the diagram we see the coordinates
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For the conjugate momenta we have
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Our Hamiltonian is
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which shows the angular momentum is conserved. From the set of equations for (7, p,), we find
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Problem 2
2.a)
Our particle moves in 1D, so we use one generalized coordinate x. The potential is given by

integrating the force:
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where we assume as x — oo that U — 0 so we take C' = 0. The kinetic energy and the Lagrangian
are therefore
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The conjugate momentum of x is
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so the Hamiltonian is
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2.b)

From above we see H = FE/, since there are no constraints and U is not a function of . However,
since U = U(x,t) (explicitly depends on time!), the energy of the system is not conserved:
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Problem 3
3.a)
The magnetic field is given to us as B(7) = By2, and we can verify that the vector potential

A(F) = %ﬁ x 7 satisfies B = V x A in the following way:
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This implies exactly that
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3.b)

The Lagrangian is
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3.c)

The mechanical momenta are
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So we have (using Landau’s definition of Poisson’s bracket, as also given in this problem),
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where we have used that {p,,p,} = 0 and {y, z} = 0. Similarly we have
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(3.d)

In terms of the mechanical momenta:
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Now using
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The last expression implies 7, () = constant = 7,(0). Taking a derivative of the first expression
and plugging in the second gives
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The solution to this is
7. (t) = Acos(wt) + Bsin(wt), (41)
while for 7, we have
1
m,(t) = — (—Awsin(wt) + Bw cos(wt)) = —Asin(wt) + B cos(wt). (42)
w
With the initial conditions
7.(0) = A, my(0) =B, (43)

we can write

m,(t) = —m(0)sin(wt) + m,(0) cos(wt) (44)
m.(t) = m(0).

From Newton’s 2nd law we would get
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This means that 7 moves precessing about the z-axis with frequency w = £, as we have found
in the explicit expression for 7., m,, and 7, above. Also note that, since
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we have also found (38).



