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1 Graded problems

Problem 1

1.a)

Given the 1-dimensional system

H =
p2

2
− 1

2q2
, (1)

we want to show that
D =
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2
−Ht (2)

is a constant of the motion. Indeed,
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)
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1.b)

Now we consider a plane motion with

H = |~p|n − ar−n , (4)

and we want to show there is a constant of the motion

D =
~p · ~r
n
−Ht , (5)



where ~r ≡ (x, y, z) and ~p is the vector of the conjugate momenta to (x, y, z).
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=
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∑
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1.c)

Consider the canonical transformation Q = λq, p = λP but with the time dilation t′ = λ2t.
Clearly the canonical form of Hamilton equations is not preserved if t scale as in t′ = λ2t, but we
can check that the analytic form of the equations (in terms of (q, p) in one case and (Q,P ) in the
other) is the same. Indeed,

q̇ = [q,H] =

[
q,
p2

2
− 1

2q2

]
=

[
q,
p2

2

]
= p ,

ṗ = [p,H] =

[
p,
p2

2
− 1

2q2

]
=

[
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2q2

]
=

(
− 1

q3

)
= − 1

q3
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Implement the transformation we can then derive that

q̇ =
dq

dt
=

1

λ

dQ

dt
=

1

λ

dQ

dt′
dt′

dt
=
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λ

dQ

dt′
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dQ

dt′
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=
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λ
q̇ =
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λ
λP = P → Q̇ = P ,
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dt′
dt′
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dP

dt′
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dP

dt′

dP

dt′
=
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ṗ = − 1

λ3
1

q3
= − 1

Q3
→ Ṗ = − 1

Q3
,

and prove that the form of Hamilton’s equations is preserved.

Problem 2

2.a)

Given the Hamiltonian

H =
1

2
(

1

q2
+ p2q4) , (8)



the canonical equations of motion are

q̇ = [q,H] =

[
q,

1

2

(
1

q2
+ p2q4
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(9)

=
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2
[q2, p2q4] =

1

2
2p[q, p]q4 = q4p ,

ṗ = [p,H] =

[
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1

2

(
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=
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2.b)

The canonical transformation that will make H look like the the Hamiltonian of a harmonic
oscillator of position Q and conjugate momentum P is{

P =
√
m
q

Q = 1√
m
pq2

⇐⇒

{
q =

√
m 1

P

p = 1√
m
QP 2 (10)

This transformation takes

H =⇒ H ′ =
1

2m
(P 2 +m2Q2)] . (11)

The generating function is

F1 = −
√
m

1

q
Q , (12)

such that {
∂F1

∂Q
= −P = −

√
mq → P =

√
mq

∂F1

∂P
= p = 1

q2

√
mQ = p2

m

√
mQ = 1√

m
QP 2 . (13)

The canonical equations in the (Q,P ) variables are{
Q̇ = ∂H′

∂P
= P

m
,

Ṗ = −∂H′

∂Q
= −mQ . (14)



which, using Q = Q(q, p) and P = P (q, p) as given in Eq. (10), become

Q̇ =
P

m
←→ 1√

m
(ṗq2 + 2pqq̇) =

1√
m

1

q
(15)

ṗ =
1

q2

(
1

q
− 2pqq̇

)
Ṗ = −mQ←→ −

√
m
q̇

q2
= −m 1√

m
pq2

q̇ = pq4 → as before

⇓

ṗ =
1

q2

(
1

q
− 2pq · pq4

)
1

q3
− 2p2q3 → as before.

Problem 3

3.a)

We can prove that the transformation

Q = p+ iaq , P =
p− iaq

2ia
, (16)

is canonical either by showing that it preserves the form of Hamilton’s equations of motion, or
by verifying that the Jacobian matrix M of the change of variables (q, p) → (Q,P ) satisfy the
symplectic condition J = MJMT, or by verifying that the fundamental Poisson brackets are
invariant under such transformation.

The last two proofs are very simple. Indeed, the matrix M is given by,

M =

(
ia 1
−1

2
1
2ia

)
, (17)

and one can easily verify that

MJMT =

(
ia 1
−1

2
1
2ia

)(
0 1
−1 0

)(
ia −1

2

1 1
2ia

)
=

(
0 1
−1 0

)
= J . (18)

On the other hand, it is also easy to show that

{Q,P} =

{
p+ iaq,

p− iaq
2ia

}
= −1

2
{p, q}+

1

2
{q, p} = {q, p} (19)

such that the form of the fundamental Poisson brackets is preserved.
In order to prove that the canonical form of the equations of motion is preserved we need to

specify the Hamiltonian. From part 1.b) we know that the system is a one-dimensional harmonic
oscillator. Therefore, in terms of (q, p) variables the Hamiltonian is

H =
p2

2m
+
k

2
q2 , (20)



and the equations of motion are

∂H

∂q
= −ṗ = kq , (21)

∂H

∂p
= q̇ =

p

m
,

which, upon further derivation with respect to time, can be cast in the form,

q̈ + ω2q = 0 → q(t) = D cos(ωt+ δ) , (22)

ṗ = −kq → p(t) = −Dk
ω

sin(ωt+ δ) ,

where we can recognize the familiar solution for the one-dimensional harmonic oscillator in terms of
two arbitrary constants (D and δ) that can be determined from the initial conditions q(t = 0) = q0
and p(t = 0) = p0.

In order to find the form of Hamilton’s equations in terms of the new variables (Q,P ), we
need to find the transformed hamiltonian, H ′(Q,P ), which is obtained from H(q, p) by replacing
q = q(Q,P ) and p = p(Q,P ), where, through some simple algebra, one see that,

q =
Q− 2iaP

2ia
and p =

Q+ 2iaP

2
. (23)

Choosing a = mω in Eq. (23), where ω =
√

k
m

, we can write

H =
p2 +m2ω2q2

2m
= iωQP ≡ H ′ , (24)

In terms of Q and P variables, Hamilton’s equations are now,

∂H ′

∂Q
= −Ṗ = iωP , (25)

∂H ′

∂P
= Q̇ = iωQ ,

which, upon further derivation with respect to time, can be cast in the form

P̈ + ω2P = 0 , (26)

Q̈+ ω2Q = 0 ,

of the same form of Eq. (22).

3.b)

The form of the Hamiltonian in terms of Q and P and the corresponding equations of motions have
been found in 1.a). Here we want to find the solution of Eqs. (26) and show that it corresponds
to the solution of Eqs. (22), i.e. to the motion of a one-dimensional harmonic oscillator. It is
indeed obvious from the form of the equations, but, to be pedantic, let us write the solution of



Eqs. (26) (in terms of two arbitrary constants A and B which could be thought as A = Q(t = 0)
and B = P (t = 0)) as

Q(t) = Aeiωt , (27)

P (t) = Be−iωt .

Substituting it into q(t) of Eq. (23) we get

q(t) =
A

2ia
eiωt −Be−iωt =

(
A

2ia
−B

)
cos(ωt) + i

(
A

2ia
+B

)
sin(ωt) (28)

= D cos δ cos(ωt)−D sin δ sin(ωt) = D cos(ωt+ δ) ,

which corresponds to q(t) in Eq. (22) if we identify

D cos δ =

(
A

2ia
−B

)
and D sin δ = −i

(
A

2ia
+B

)
. (29)

Inverting these relations to get A and B,

A = iaD(cos δ + i sin δ) = iaDeiδ , (30)

B = −D
2

(cos δ − i sin δ) = −D
2
e−iδ ,

and substituting them in Eq. (23) to obtain p(t) gives

p(t) =
A

2
eiωt + iaBe−iωt =

1

2
iaDeiδeiωt − iaD

2
e−iδe−iωt (31)

=
1

2
iaD

(
ei(ωt+δ) − e−i(ωt+δ)

)
= −aD sin(ωt+ δ) ,

which corresponds to p(t) of Eq. (22) for a = mω = k
ω

.


