
PHY 5246: Theoretical Dynamics, Fall 2015

Assignment # 2, Solutions

1 Graded Problems

Problem 1

(1.a)
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The coordinates can be written using spherical coordi-
nates as:

x = R sin θ cos(ωt) , (1)

y = R sin θ sin(ωt) ,

z = −R cos θ ,

where we have used the constraints: r = R and φ = ωt
(i.e. φ̇ = ω), and reduced the number of generalized coor-
dinates to just one (θ) and its velocity (θ̇). The problem
is therefore equivalent to a one-dimensional problem. No-
tice that the constraints are time dependent, which hint
to the fact that the mechanical energy of the system may
not be conserved. The kinetic and potential energy of the
system are

T =
1

2
m(R2θ̇2 +R2 sin2 θω2) , (2)

V = −mgR cos θ ,

and the Lagrangian of the system is

L = T −V =
1

2
m(R2θ̇2+R2 sin2 θω2)+mgR cos θ . (3)

The Euler-Lagrange equation of motion is

d

dt

∂L

∂θ̇
−

∂L

∂θ
= 0 −→ θ̈ = ω2 sin θ cos θ −

g

R
sin θ . (4)

Using the equation of motion one can indeed verify that dE/dt is not zero, as expected.

(1.b)

The equilibrium points are defined as the points where the bead, if placed there (i.e. with zero
velocity), does not move. They are given therefore by the condition

θ̈ = 0 −→ sin θ
(

ω2 cos θ −
g

R

)

= 0 , (5)



and are
θ0 = 0, π , and θ0 = arccos

( g

Rω2

)

if
g

Rω2
< 1 . (6)

Let us notice that we could get to the same result by interpreting the r.h.s of Eq. (4) as a force,
F (θ) and defining an effective potential, Veff(θ) such that

F (θ) = −
∂Veff(θ)

∂θ

Veff(θ) = −
1

2
mR2 sin2 θω2 −mgR cos θ .

Then, the equilibrium condition is equivalent to the condition that gives the extrema of Veff(θ),
i.e.

θ̈ = 0 −→ F (θ) = 0 −→
∂Veff(θ)

∂θ
= 0 . (7)

The nature of the equilibrium points (stable vs unstable) can then be determined by looking at
the second derivative of Veff(θ),

∂2Veff(θ)

∂θ2
= −mR2ω2 cos2 θ +mR2ω2 sin2 θ +mgR cos θ , (8)

at each equilibrium point. We find that θ0 = π is always an unstable equilibrium point, since:

∂2Veff(θ)

∂θ2

∣

∣

∣

∣

θ0=π

= −mR2ω2 −mgR < 0 , (9)

while the nature of θ0 = 0 and θ0 = arccos
(

g
Rω2

)

depends on the ratio g/(Rω2). Indeed,

∂2Veff(θ)

∂θ2

∣

∣

∣

∣

θ0=0

= mR2ω2

( g

Rω2
− 1

)

(10)

and θ0 = 0 is a stable equilibrium point if g/(Rω2) > 1 while it is unstable if g/(Rω2) < 1.
Viceversa,

∂2Veff(θ)

∂θ2

∣

∣

∣

∣

θ0=arccos( g

Rω2 )
= mR2ω2

[

1−
( g

Rω2

)2
]

, (11)

and θ0 = arccos(g/(Rω2)) is a stable equilibrium point if g/(Rω2) < 1, while it is unstable if
g/(Rω2) > 1. The shape of Veff(θ) therefore changes in going from g/(Rω2) > 1 to g/(Rω2) < 1.
In the first case Veff(θ) has a minimum at θ0 = 0 and no other extrema except a maximum at
θ0 = π, while in the second case, θ0 = 0 becomes a maximum (as well as θ0 = π) and a new
minimum develops at θ0 = arccos(g/(Rω2)). Of course the potential is symmetric with respect
to θ, so an analogous discussion holds for θ between π and 2π. We can actually say that for
g/(Rω2) < 1 there are two stable equilibrium points, one to the right and one to the left of the
θ = 0 position, both at an angle θ0 = arccos(g/(Rω2)) from the vertical.

(1.c)

To find the frequency of small oscillations about the stable equilibrium positions (θ0) we consider
a small displacement from θ0 (let’s call it δ), i.e. we write

θ = θ0 + δ , (12)



and plug it into the equation of motion. We then expand the equation of motion in δ and its
derivatives, keeping only up to linear terms, i.e. we write

sin(θ0 + δ) = sin θ0 cos δ + cos θ0 sin δ = sin θ0(1 +O(δ2)) + cos θ0(δ +O(δ3) , (13)

cos(θ0 + δ) = cos θ0 cos δ − sin θ0 sin δ = cos θ0(1 +O(δ2))− sin θ0(δ +O(δ3) ,

and we get the equation of motion for small oscillations about θ0 in the form

δ̈ =
(

ω2 sin θ0 cos θ0 −
g

R
sin θ0

)

+ δ
[

ω2
(

cos2 θ0 − sin2 θ0
)

−
g

R
cos θ0

]

. (14)

The terms in the first parenthesis cancel because θ0 is a solution of θ̈ = 0 (or equivalently a
minimum of Veff and therefore satisfies the extreme condition in Eq. (7)), and the equation for δ
reduces to

δ̈ + Ω2δ = 0 , (15)

which is the equation of a one-dimensional harmonic oscillator with frequency

Ω2 =
g

R
cos θ0 − ω2

(

cos2 θ0 − sin2 θ0
)

. (16)

We then have two cases:

• g/(Rω2) > 1, the stable equilibrium point is θ0 = 0 and the frequency of small oscillation
about θ0 is

Ω =
( g

R
− ω2

)1/2

, (17)

• g/(Rω2) < 1, the stable equilibrium point is θ0 = arccos(g/(Rω2)) and the frequency of
small oscillation about θ0 is

Ω = ω sin θ0 = ω

(

1−
g2

R2ω4

)1/2

. (18)

At the critical value of ω2 = g/R, the system is transitioning between the two cases, and the
critical values all occur at θ = 0.

Problem 2
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The system has two degrees of freedom and given the symmetry of the prob-
lem, it is natural to choose polar coordinates, r and θ. Indeed, we will denote
by r the elongation of the spring from its unscratched length. They are the
generalized coordinates of the problem, in terms of which we can write the
kinetic and potential energy of m as

T =
1

2
m(ṙ2 + (l + r)2θ̇2) , (19)

V = −mg(l + r) cos θ +
1

2
kr2 ,



and the Lagrangian of the system as

L = T − V =
1

2
m(ṙ2 + (l + r)2θ̇2) +mg(l + r) cos θ −

1

2
kr2 . (20)

The equation of motion for r is then

m(r̈ − (r + l)θ̇2) = mg cos θ − kr , (21)

while the equation of motion for θ is

m[(l + r)θ̈ + 2ṙθ̇] = −mg sin θ . (22)

Notice that Eq. (21) and (22) are of the form mar = Fr and maθ = Fθ, where (ar, Fr) and (aθ, Fθ)
are the components of the acceleration and of the total applied force in the radial and tangent
direction respectively.

Problem 3 (1.14 of Goldstein’s book)

Notice that the problem is in 3d. So, imagine the center of mass of the system to move in a circle
in the (x, y) plane, while the rod+masses can also move in z.

The kinetic energy (K.E.) of the system is the K.E. of the CM (with mass 2m) plus the K.E.
of the two masses rotating with respect to the CM.

T = TCM + T1+2 wrt CM

TCM =
1

2
(2m)a2α̇2

T1+2 wrt CM = 2
1

2
m

(

l

2

)2

(θ̇2 + sin2 θφ̇2).

Here the coordinates of 1 and 2 with respect to the CM are

x1 =
l

2
cosφ sin θ x2 = −

l

2
cos φ sin θ (23)

y1 =
l

2
sinφ sin θ y2 = −

l

2
sin φ sin θ (24)

z1 =
l

2
cos θ z2 = −

l

2
cos θ (25)

Problem 4 (1.21 of Goldstein’s book)

Here we use generalized coordinates {r, θ} and set the length of the string to be fixed, l.

T =
1

2
m1(ṙ

2 + r2θ̇2) +
1

2
m2ṙ

2

V = −m2g(l− r)

L = T − V =
1

2
(m1 +m2)ṙ

2 +
1

2
m1r

2θ̇2 +m2g(l + r).

The equation of motion for r from the Euler-Lagrange equations is

(m1 +m2)r̈ −m1rθ̇
2 −m2g = 0.
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Figure 1: Figures for Problem 3
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For the θ equation we note that since the Lagrangian
is not a function of θ we get

d

dt

∂L

∂θ̇
−

∂L

∂θ
= 0 ⇒

d

dt

∂L

∂θ̇
= 0.

This implies that the angular momentum of m1 about
the origin is conserved,

pθ =
∂L

∂θ̇
= m1r

2θ̇ = constant ⇒ θ̇ =
pθ

m1r2
.

Thus we can rewrite the r equation of motion as

(m1 +m2)r̈ −
p2θ

m1r3
+m2g = 0,

which is now just a 1d problem.

2 Non-graded Problems

Problem 5 (1.15 of Goldstein’s book)

U(r,v) = V (r) + σ · L



(a)

U(r,v) = V (r) + σ · (r×mv)

= V (r) +m [σx(yvz − zvy) + σy(zvx − xvz) + σz(xvy − yvx)]

Fx = −
∂V

∂x
+

d

dt

∂V

∂ẋ

= −
∂V

∂r

x

r
−m(−σyvz + σzvy) +m(σyvz − σzvy)

= −
∂V

∂r

x

r
+ 2m(σyvz − σzvy)

Fy = −
∂V

∂r

y

r
+ 2m(σzvx − σxvz)

Fz = −
∂V

∂r

z

r
+ 2m(σxvy − σyvz)

F = −
∂V

∂r
r̂+ 2m(σ × v)

Now putting these equations into spherical coordinates and choosing σ = σẑ, we can plug U(r,v)
into the general Lagrange equations

Qi = −
dU

dxi
+

d

dt

(

∂U

∂ẋi

)

.

We find the following:

U = V (r) +mσr2 sin2 θφ̇

Qr = −
dV

dr
− 2mσr sin2 θφ̇

Qθ = −2mσr2 sin θ cos θφ̇

Qφ = 2mσr2 sin θ cos θθ̇ + 2mσrṙ sin2 θ.

(b)

Putting σ in the ẑ direction it is easy (but rather lengthy) to show the result

Qj =
∑

i

Fi ·
∂ri
∂qj

.

(c)

T =
1

2
m(ṙ2 + r2θ̇2 + r2 sin2 θφ̇2),

where the equations of motion are
d

dt

∂T

∂q̇j
−

∂T

∂qj
= Qj .



Problem 6 (1.18 of Goldstein’s book)

L =
m

2
(aẋ2 + 2bẋẏ + cẏ2)−

k

2
(ax2 + 2bxy + cy2).

Equations of motion:

m(aẍ+ bÿ) + k(ax+ by) = 0

m(cÿ + bẍ) + k(cy + bx) = 0

• Case 1, a = c = 0.

ÿ + ω2y = 0

ẍ+ ω2x = 0

where ω =
√

k/m. So we have two decoupled 2d harmonic oscillators with the same fre-
quency.

• Case 2, b = 0, c = −a.

ẍ+ ω2x = 0

ÿ + ω2y = 0.

and the result is the same as in the first case.

If we make a change of variables
(

u
v

)

=

(

a b
b c

)(

x
y

)

⇒
u = ax + by
v = bx + cy

the system decouples at the level of the Lagrangian. The b2 − ac 6= 0 condition is the condition
for the transformation matrix to not be singular.

Problem 7 (1.22 of Goldstein’s book)
{

x1 = l1 sin θ1
y1 = −l1 cos θ1

{

ẋ1 = l1θ̇1 cos θ1
ẏ1 = l1θ̇1 sin θ1

{

x2 = l1 sin θ1 + l2 sin θ2
y2 = −l1 cos θ1 − l2 cos θ2

{

ẋ2 = l1θ̇1 cos θ1 + l2θ̇2 cos θ2
ẏ2 = l1θ̇1 sin θ1 + l2θ̇2 sin θ2

The Lagrangian is

L = T1 + T2 − V1 − V2 =
1

2
m1(ẋ

2
1 + ẏ21) +

1

2
m2(ẋ

2
2 + ẏ22)− V1 − V2

=
1

2
m1l

2
1θ̇

2
1 +

1

2
m2[l

2
1θ̇

2
1 + l22θ̇

2
2 + 2l1l2θ̇1θ̇2 cos(θ1 − θ2)] +m1gl1 cos θ1 +m2g(l1 cos θ1 + l2 cos θ2).

The equations of motion (via Euler-Lagrange) are

(m1 +m2)l1θ̈1 = −(m1 +m2)g sin θ1 −m2l2 cos(θ1 − θ2)θ̈2 − θ̇22m2l2 sin(θ1 − θ2).

m2l2θ̈2 = −m2g sin θ2 −m2l1θ̈1 cos(θ1 − θ2) + θ̇21m2l1 sin(θ1 − θ2).
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