
PHY 5246: Theoretical Dynamics, Fall 2015

Assignment # 3, Solutions

1 Graded Problems

Problem 1

(1.a)

We use cylindrical coordinates and notice that z = r cotα. We use {r, θ} as generalized coordinates
and write the kinetic energy of the bead as

T =
1

2
m

(

ṙ2 + r2θ̇2 + ż2
)

=
1

2
m

[

1

sin2 α
ṙ2 + r2θ̇2

]

, (1)

and its potential energy as
V = mgz = mgr cotα , (2)

where we have assumed V = 0 at z = 0.
The Euler-Lagrange equation of motion for the r coordinate is

d

dt

∂L

∂ṙ
= 0 −→ r̈ − r sin2 αθ̇2 + g sinα cosα = 0 , (3)

while the Euler-Lagrange equation of motion for θ is

d

dt

∂L

∂θ̇
= 0 −→

d

dt
(mr2θ̇) = 0 −→ lθ = mr2θ̇ = constant , (4)

which expresses the conservation of angular momentum about the z axis.

θ

~r

α

z



(1.b)

If the bead is in equilibrium at r = r0 then

θ̇|r=r0 = ω =
lθ

mr20
, (5)

since lθ is constant (see Eq. (4)). The equilibrium condition is that

r̈ = 0 −→
l2θ sin

2 α

m2r30
= g sinα cosα , (6)

and the frequency of small oscillations about the (stable) equilibrium position is found by inserting
r = r0+δ (with δ an infinitesimal displacement) in the r equation of motion and expanding linearly
in δ and its derivatives, which gives

δ̈ −
l2θ sin

2 α

m2(r0 + δ)3
+ g sinα cosα = δ̈ −

l2θ sin
2 α

m2r30

(

1− 3
δ

r0

)

+ g sinα cosα = 0 , (7)

which, using Eq. (6) gives

δ̈ +
3l2θ sin

2 α

m2r40
δ = 0 , (8)

and shows that the bead is performing small oscillations of frequency Ω about r = r0, where

Ω2 =
3l2θ sin

2 α

m2r40
=

3g

r0
sinα cosα . (9)

Problem 2

M

m

x

θ

y

xw

y′b

x′b

yb

xb

Since there is no rotational motion, the motion
of the wedge and of the block is completely de-
scribed by the motion of their center(s) of mass.
The problem is planar, so we have two coordi-
nates for each center of mass. Let’s call them
(xw, yw) for the center of mass of the wedge and
(xb, yb) for the center of mass of the block. We
also have two constraints:

yw = constant and (10)
yb
xb

= tan θ ,

so we will need only two generalized coordi-
nates. We pick xw for the wedge and x′

b for the
block, where x′

b is neither xb nor yb but is the
coordinate along the incline (i.e. it is the x co-
ordinate of a rotate system of Cartesian coordinates that has the x axis along the incline and the
y axis orthogonal to it; we notice that in this coordinate system the second constraint becomes



simply y′b =constant as well). The relation between xb and yb and the chosen set of generalized
coordinates is

xb = xw + x′

b cos θ + constant , (11)

yb = −x′

b sin θ + constant

where the constant terms are irrelevant either in the definition of the Lagrangian or in the form
of the equations of motion, so we do not specify them any further.

The kinetic energy of the system can then be written as

T =
1

2
Mẋ2

w +
1

2

(

ẋ2

b + ẏ2b
)

=
1

2
Mẋ2

w +
1

2

(

ẋ2

w + ẋ′2

b + 2ẋwẋ
′

b cos θ
)

, (12)

while the potential energy is

V = mgyb = −mgx′

b sin θ + constant , (13)

where the constant term can be dropped because it does not affect the equations of motion. The
Lagrangian is therefore

L = T − V =
1

2
Mẋ2

w +
1

2

(

ẋ2

w + ẋ′2

b + 2ẋwẋ
′

b cos θ
)

+mgx′

b sin θ . (14)

The equation of motion for xw is

d

dt
[Mẋw +m(ẋw + ẋ′

b cos θ)] = 0 (15)

which expresses the conservation of the x component of the linear momentum of the system. It
provides a relation between ẍw and ẍ′

b of the form

ẍw =
−m cos θ

M +m
ẍ′

b . (16)

Furthermore, the equation of motion for x′

b is

d

dt
(ẋw + ẋ′

b cos θ)−mg sin θ = 0 , (17)

which gives
ẍ′

b = g sin θ − cos θẍw . (18)

Solving the system of Eqs. (16) and (18) we get

ẍw = −
mg sin θ cos θ

M +m sin2 θ
, (19)

ẍ′

b =
g sin θ

1− m cos2 θ
M+m

.



Problem 3 (Goldstein 2.5)

The action is

S =

∫ t0

0

Ldt =

∫ t0

0

(

1

2
mẋ2 + Fx

)

dt.

From the problem statement we know ẋ(t) = B + 2Ct, and we can set the initial conditions

x(0) = A = 0 ⇒ A = 0

x(t0) = Bt0 + Ct20 = a ⇒ B =
1

t0
(a− Ct20).

Now we can explicitly calculate the action:

S =

∫ t0

0

[

1

2
m(B + 2Ct)2 + F (Bt+ CT 2)

]

dt

=

∫ t0

0

[

1

2
mB2 + 2mBCt+ 2mC2t2 + FBt + FCt2

]

dt

=
1

2
mB2t0 +mBCt20 +

2

3
mC2t30 +

1

2
FBt20 +

1

3
FCt30

=
1

2
mB2t0 + (mBC +

1

2
FB)t20 +

1

3
(2mC2 + FC)t30

=
1

2
m

1

t20
(a− Ct20)

2t0 + (mC +
1

2
F )

1

t0
(a− Ct20)t

2

0 +
1

3
(2mC2 + FC)t30

=
1

2
m

1

t0
(a2 + C2t40 − 2aCt20) + t0(mC +

1

2
F )(a− Ct20) +

1

3
(2mC2 + FC)t30

=
1

2
m
a2

t0
+

1

2
mC2t30 −maCt0 +maCt0 −mC2t30 +

1

2
aF t0 −

1

2
CFt30 +

2

3
mC2t30 +

1

3
FCt30

=
1

2
ma2

1

t0
+

1

2
aF t0 +

1

6
(mC2 − FC)t30.

Notice that since we have already set our initial conditions, the only unknown in our equation of
motion is C. Thus, this is what we want to find the minimum with respect to, ∂S/∂C = 0.

∂S

∂C
=

1

6
(2mC − F )t30 = 0.

Thus we have

C =
F

2m

B =
1

t0

(

a−
F

2m
t20

)

.

Note that we can check this is a minimum by looking at the second derivative;

∂2S

∂C2
=

1

3
mt30 > 0.



Problem 4 (Goldstein 2.22)

In general, the conservation of the total mechanical energy of the system (defined as E = T + U)
needs to be established by looking explicitly at the total differential of the energy with respect
to time, i.e. dE

dt
. Under special circumstances, i.e. when the relation between cartesian and

generalized coordinates does not depend on time and the active forces are conservative, it is true
that dE

dt
= −∂L

∂t
and the conservation of energy can be established by simply looking at the explicit

time dependence/independence of the Lagrangian.
In the case of the problem, since the equation of the constraint is time-dependent (σ(r, t) = 0),

the relation between cartesian and generalized coordinates is in general time dependent and the
conservation of energy cannot be deduced from the Lagrangian. In general we can then write that,

dE

dt
=

dT

dt
+

dU

dt
(20)

=
∂T

∂qi
q̇i +

∂T

∂q̇i
q̈i +

∂T

∂t
+

∂U

∂qi
q̇i +

∂U

∂t
,

where repeated indeces indicate summation. Using that for a system subject to both potential
(Qi = −∂U

∂qi
) and non-potential (Q̃i) forces the Euler-Lagrange equations read,

d

dt

∂T

∂q̇i
−

∂T

∂qi
= −

∂U

∂qi
+ Q̃i , (21)

we can recast Eq. (20) in the following form,

dE

dt
=

(

d

dt

∂T

∂q̇i
+

∂U

dqi
− Q̃i

)

q̇i +
∂T

∂q̇i
q̈i +

∂T

∂t
+

∂U

∂qi
q̇i +

∂U

∂t
(22)

=
d

dt

(

∂T

∂q̇i
q̇i

)

+
∂T

dt
+ 2

∂U

∂qi
q̇i +

∂U

dt
− Q̃iq̇i

= 2
dT

dt
−

d(T1 + 2T0)

dt
+

∂T

dt
+ 2

dU

dt
−

∂U

∂t
− Q̃iq̇i , (23)

or equivalently,
dE

dt
=

d(T1 + 2T0)

dt
−

∂T

∂t
+

∂U

∂t
+ Q̃iq̇i , (24)

where we have written the kinetic energy T as a polinomial in the q̇i,

T = Aij q̇iq̇j +Biq̇i + C ≡ T2 + T1 + T0 , (25)

with,

Aij =
∂r

∂qi
·
∂r

∂qj
, Bi =

∂r

∂qi
·
∂r

∂t
, and C =

∂r

∂t
·
∂r

∂t
, (26)

and we have used that,
dT2

dt
= 2T2 ,

dT1

dt
= T1 , and

dT0

dT
= 0 . (27)

If the constraints are time dependent (or reonomic), the relations between cartesian and gen-
eralized coordinates will in general be also time dependent ( r = r(qi, t)) and one or more terms on
the right hand side of Eq. (24) will be non zero causing the total mechanical energy of the system



not to be conserved. Physically, we can interpret this by observing that, in the case or reonomic
or time-dependent constraints, the work of the forces of constraints is non zero since they do not
remain orthogonal to the trajectory during the time evolution of the system (given that the con-
straints change with time). The work of the forces of constraints per unit time corresponds indeed
to the last term in Eq. (24), and as we see it is just one of the reasons why the total mechanical
energy of the system is not conserved. Occasionally the explicit time-dependence of either kinetic
or potential energies, or both, can contribute to it as well.

2 Non-graded Problems

Problem 5 (Goldstein 2.19)

If the mass distribution has a given symmetry, so will the potential and therefore so will the
Lagrangian. From the symmetry, we deduce the conserved quantity.

• (a) The force does not depend on (x, y) → (px, py) conserved. It also does not depend on
the angle of rotation about ẑ, so lz is conserved as well.

• (b) The force does not depend on x, so px is conserved.

• (c) The force does not depend on z so pz is conserved. It is also independent of the angle of
rotating about ẑ, so lz is also conserved.

• (d) The force does not depend on the angle of rotation about ẑ (although it is now a function
of z since it is finite), so lz is conserved while pz is not.

• (e) The force does not depend on z so pz is conserved.

• (f) The force does not depend on the angle of rotation about ẑ, so lz is conserved.

• (g) For h the distance between coils, the combination hpz + lz is conserved.

Problem 6 (Goldstein 2.6)

First assume the Earth has a uniform mass density ρ, so that the mass distribution is

M(r) = 4π2

∫ r

0

ρr2dr =
4

3
πρr3,

ρ =
M(R)
4

3
πR3

=
ME

4

3
πR3

⇒ M(r) = ME

r3

R3
,

Where R is the radius of the Earth and ME is the mass. Using this we can find the gravitational
force and corresponding potential on a mass m,

F(r) = −
GM(r)m

r2
r̂ = −

GMEm

R3
rr̂,

V (r) = −

∫ r

0

(F(r′) · r̂′)dr′ =
GMEm

2R3
r2.



So at a distance r from the center of the Earth we can find the energy to be

E = T + V =
1

2
mv2 +

GMEm

2R3
r2.

Since the gravitational force is conservative we can use energy conservation to find the velocity.
If the velocity at the surface is zero we have

E(R) = E(r) ⇒
GMEm

2R3
R2 =

1

2
mv2 +

GMEm

2R3
r2 ⇒ v(r) =

√

GME

R3
(R2 − r2).

We want to find the curve that minimizes the time between points a and b,

t =

∫ b

a

ds

v(r)
.

If we consider coordinates {x, y} which define the plane passing through the center of the Earth
and the two points at the ends of the curve, we can expressed the arc length and the time traveled
as

ds =
√

dx2 + dy2 =

√

(

dx

dθ

)2

+

(

dy

dθ

)2

dθ

=
√

x′2 + y′2dθ,

t =

∫ θ

0

√

√

√

√ R3

GME

[

(

dx
dθ′

)2
+
(

dy

dθ′

)2
]

R2 − r2
dθ′

=

∫ θ

0

√

k2
x′2 + y′2

R2 − (x2 + y2)
dθ′.

We have defined k =
√

R3/GME. To minimize the function

f(x, y, x′, y′) = k

√

x′2 + y′2

R2 − (x2 + y2)
(28)

we consider the Euler-Lagrange equations:

d

dθ

∂f

∂x′
−

∂f

∂x
= 0

d

dθ

∂f

∂y′
−

∂f

∂y
= 0.

Since f is not explicitly a function of θ, the Euler-Lagrange equations are equivalent to

f − x′
∂f

∂x′
= const. = C1

f − y′
∂f

∂y′
= const. = C2



Using our function from eq (28) we can write this as:

y′2

x′2 + y′2

√

x′2 + y′2

R2 − (x2 + y2)
=

C1

k

x′2

x′2 + y′2

√

x′2 + y′2

R2 − (x2 + y2)
=

C2

k

⇓ ⇓
√

x′2 + y′2

R2 − (x2 + y2)
=

C1

k
+

C2

k

x′2 + y′2

R2 − (x2 + y2)
=

C2

k2

x′2 + y′2 =
C2

k2

[

R2 − (x2 + y2)
]

, (29)

where C = C1 + C2. The solution to this equation is a hypocycloid with parametric equations

x(θ) = (R− b) cos θ + b cos

(

R− b

b
θ

)

y(θ) = (R− b) sin θ − b sin

(

R− b

b
θ

)

.

These give the coordinates of a point on a circle of radius b rolling with no slipping inside a circle
of radius R. The constant b is determined by finding

x′(θ) = −(R − b) sin θ − (R − b) sin

(

R− b

b
θ

)

y′(θ) = (R− b) cos θ − (R− b) cos

(

R− b

b
θ

)

.

and substituting into eq. (29). We find

C2

k2
=

R− b

b
⇒ C = k

√

R− b

b
.

The time is takes to travel between two points on the Earth’s surface is



B

A

θAB

s
=

2
π
b

R

tAB =

∫ B

A

ds

v(r)
=

∫ B

A

k

√

x′2 + y′2

R2 − (x2 + y2)
dθ

= k
C

k

∫ B

A

dθ = CdθAB

= C
2πb

R
= k

√

R − b

b

2πb

R

= k

√

R− s
2
π

s
2
π

s

R

= k

√

2πR− s

s

s

R

=

√

sR

GME

(2πR− s) ≈ 1640s ≈ 27.4min.

We have used the fact that the distance will simply be an arc length of a circle connecting the
two points A and B (see figure). We have also used the constants s = 4800 km, R ∼ 6371 km,
ME ∼ 5976 × 1024 kg, G = 6.6726 × 10−11 Nm2/kg2. At the deepest point the tunnel would be
2b = s/π ≈ 1528 km!

Using another property of the hypocycloid we can determine the length of the tunnel:

l(θ) =
8(R− b)b

R
sin2

(

R

4b
θ

)

l

(

2πb

R

)

= 8

(

R− s
2π

)

s
2π

R
sin2

(

R

4b

2πb

R

)

= 8
(

R−
s

2π

) s

2πR
≈ 5378 km.


