
PHY 5246: Theoretical Dynamics, Fall 2015

Assignment # 6, Solutions

1 Graded Problems

Problem 1 (Goldstein 3.14)

1.a)

For a circular orbit, by conservation of energy we have
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2r0
=
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2mr20
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For a parabolic orbit with the same angular momentum l we have
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.

Thus we see
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1.b)

For the circular orbit, with v = rθ̇ we have
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r
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For a parabolic orbit with the same r (using v = ṙ2 + r2θ̇2) we can show
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2
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This gives us the required result,
v
(p)
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(c)
(r).



Problem 2

The equation of the orbit for the force given in this problem is

∂2

∂θ2

(

1

r

)

+
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r
= −mr2

l2
F (r) =

mk
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mλ

l2r
, (1)

that can be written as
∂2

∂θ2

(

1

r

)

+

(

1− mλ

l2

)

1

r
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mk

l2
. (2)

This equation is of the form
∂2u

∂θ2
+ ω2u =

mk

l2
, (3)

with ω2 = (1−mλ/l2) and gives different solutions according to the different values of λ.

2.a) ω2 = (1−mλ/l2) > 0 → λ < l2/m,
the equation is the same we encountered for the case of gravitational interaction, with the
only difference that now ω2 6= 1. The solution of the equation is of the form:

u(θ) = r−1(θ) = A cos(ωθ) +
mk

l2ω2
, (4)

where we have chosen the arbitrary phase δ = 0. Depending on the value of the energy
the orbit is either an ellipse, or a parabola or an hyperbola. In the case of bounded orbits
(ellipse) we notice that the main difference with respect to the pure gravitational interaction
is that the apsidal points are now reached at θ = 0 and θ = π/ω > π, which indicates a
precession of the orbit.

2.b) ω2 = (1−mλ/l2) = 0 → λ = l2/m,
the solution of the equation is simply

u(θ) = r−1(θ) =
mk

2l2
θ2 + c1θ + c2 , (5)

showing that the radial distance decreases for increasing angles with an inverse quadratic
law. The particle spirals in towards the center of force.

2.c) ω2 = (1−mλ/l2) < 0 → λ > l2/m,
the solution is as for case 2.a), but expressed in terms of hyperbolic functions instead of
harmonic functions, i.e.

u(θ) = r−1(θ) = A cosh(ωθ) +
mk

l2ω2
, (6)

showing that the radial distance decreases for increasing angles with a negative exponential
law. In this case as well, the particle spirals in towards the center of force.
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2acos θ =
r
2a

Problem 3 (Goldstein 3.13)

3.a)

We have for the equation of the orbit,
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Since r = 2a cos θ (see figure), we can write
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Now plugging this into (7), we find
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3.b)

Finding the potential and kinetic energies:
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3.c)

From the figure we know that
dr

dθ
= −2a sin θ,

and so using the chain rule

dr

dt

dt

dθ
= −2a sin θ, with
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= θ̇ we have
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.

Now we integrate this equation over one orbit to find the period. To avoid any possible problems
with multiple-valued functions, we will integrate from rmax = 2a to rmin = 0 and multiply the
result by two.
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3.d)

From the definition of φ in the figure we see that φ = 2θ, so we can write our Cartesian coordinates
as

{ x = a+ a cosφ
y = a sinφ

↓
{ x = a+ a cos 2θ = a(2 cos2 θ − 1 + 1) = 2a cos2 θ
y = a sin 2θ = 2a sin θ cos θ

Take a derivative with respect to time of these to find ẋ and ẏ:
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l
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.

Here we have used r = 2a cos θ and 4a2 − r2 = 2a sin θ. Now we can see that as r → 0,

{ ẋ → −∞
ẏ → −∞ ⇒ v =

√

ẋ2 + ẏ2 → ∞.

Problem 4

The effective potential is

V ′(r) =
l2

2mr2
− C

3r3
, (8)

it becomes infinitely negative for r → 0, it has a positive maximum for r = r0 (see (1.a)), and
vanishes for r → ∞, as illustrated in the plot.
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4.a)

The extrema of the effective potential are found by searching the zeros of the derivative of V ′(r)
with respect to r,

dV ′(r)

dr
= − l2

mr3
+

C

r4
=

1
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[

− l2

m
+

C

r

]

, (9)

i.e.
dV ′(r)

dr
= 0 ⇒ r = r0 =

Cm
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. (10)

Both from the plot of V ′(r) and from the fact that
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< 0 , (11)

we see that r = r0 is a maximum of the effective potential. The maximum value of the effective
potential is

V ′(r)max = V ′(r0) =
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=

C

2

1

r30
− C

3

1

r30
=

C
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4.b)

If a particle comes in with energy E > V ′(r)max it can continue all the way to r = 0, i.e. it is
captured by the center of force. The condition on the energy gives automatically a condition on
the impact parameter since

Emin = V ′(r)max =
l6

6C2m3
=

(mv0b)
6

6C2m3
=

m3v60b
6

6C2
, (13)

and then

E > Emin ⇒ 1

2
mv20 >

m3v60b
6
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(
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m2v40

)1/6

. (14)

Consequently the cross section for capture is

σcapture = πb2max = π

(

3C2

m2v40

)1/3

. (15)

2 Non-graded Problems

Problem 5 (Goldstein 3.10)

The planet with mass M is moving on a highly eccentric elliptic orbit, so its energy is

E0 = − k

2a
,

where note that ǫ ∼ 1 ⇒ E ∼ 0, but not quite. In other words you need just a small change ∆E
to get to E = 0. At the aphelion (where it has velocity v0, all in the tangent direction) it is hit by
a comet (with mass m << M) moving with velocity vc in the same tangent direction. Thus the



collision is head-on with both objects moving in the same direction. The collision is assumed to
be completely inelastic, i.e. the two objects stick together forming a new object of mass (M +m).
Linear momentum is conserved while kinetic energy is not.

Conservation of linear momentum gives

Mv0 +mvc = (M +m)(v0 + δv)

vc =
1

m
[(M +m)(v0 + δv)−Mv0]

=
1

m
[Mδv +mv0 + o(mδv)] (16)

≈ M

m
δv + v0.

In the second to last line we have kept o(m/M) but are going to discard o(m/Mδv) since δv is a
small quantity because v0 is almost small enough to make E = 0 (but not quite!). The energy is
not conserved, and in fact the collision must increase the energy from the initial value E0 (E0 < 0)
to E = 0 in order for the resulting orbit to be parabolic. So, the comet has to have a kinetic
energy

T (min)
c =

1

2
mv2c (17)

so that the final energy is 0:
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r
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2
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where E0 =
1
2
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r
. Setting E = 0 we get
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2

m

M
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Plugging this into (16) we find
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M
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)
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= − E0

mv0
− 1

2
v0 + v0 = − E0

mv0
+

1

2
v0.

Plugging this into (17) we finally find
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Now we can finally derive v0 in terms of the constant parameters of the orbit, the mass of planet
and k. From angular momentum conservation we have that (at the aphelion, and using ǫ = 1−α)

l = Mrmaxv0 = Ma(1 + ǫ)v0 = Ma(2− α)v0

v20 =
l2

M2a2(2− α)2
=

aMk(1 − ǫ2)

M2a2(2− α)2

=
aMk(1 − (1− α)2)

M2a2(2− α)2
≈ αk

2Ma
.

So now we have
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m

k
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k

4a
+

1
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a

=
k
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1

α

M

m
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)
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m

M
α

k
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.

Note that the second term is small compared to the first since α << 1 and m/M << 1. Therefore

T (min)
c ≈ 1

α

M

m

k

4a
.


