
PHY 5246: Theoretical Dynamics, Fall 2015

Assignment # 7, Solutions

1 Graded Problems

Problem 1

ψ

ψ
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(1.a)

The scattering angle satisfies the relation

Θ = π − 2ψ , (1)

where ψ is the angle between the direction of the incoming asymptote and the periapsis (the
direction of closest approach), and can be obtained from the equation of the orbit

θ =
∫ r

r0

dr′

(r′)2
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l2
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+ θ0 , (2)

setting θ0 = π for r0 = ∞ (the incoming direction), such that θ = π − θ for r = rmin, i.e.
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The equation of the hyperbolic orbit is then

1

r
=
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l2
(1 + ǫ cos(θ − π)) =

mk

l2
(1− ǫ cos θ) , (4)



where ǫ =
√

1 + 2El2/(mk2) > 1 ↔ E > 0 (eccentricity of the hyperbolic orbit) and ψ is defined
by the limit

r → ∞ → cosψ =
1

ǫ
. (5)

In terms of the scattering angle the previous condition becomes
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)
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2
=

1

ǫ
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which implies
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and finally
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=
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k
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2
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for k = GMm and γ = v20/(GM).

(1.b)

Using the notation of your book,
dσ
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=
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Using the result in (2.a), we can write it as
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(1.c)

For Θ = 180◦, i.e. for the case of backward scattering, the differential scattering cross section is

dσ

dΩ
≃

1

4γ2
≃

1

v40
, (11)

and

dσ

dΩ
→ ∞ for v0 → 0 , (12)

dσ

dΩ
→ 0 for v0 → ∞ .

Indeed, for v0 → 0 (i.e. if particles approach with very low speed) we have that E → 0, i.e. the
orbit degenerates into a parabolic orbit and all particles, after having approached the center of
force, move back from where they approached from. On the other hand, if v0 → ∞ (i.e. if particles
approach with very high speed), their kinetic energy is very large, the total energy of the orbit
is very mildly affected by the center of force potential energy, and the particles’ orbits are very
mildly deflected, such that almost no particles are deflected backward.



(1.d)

For Θ ≃ 0, i.e. for the case of forward scattering, we see that

dσ

dΩ
→ ∞ , (13)

i.e. the cross section for forward scattering seems to be infinite. This is due to the fact that
all impact parameters can contribute to the cross section, up to infinity. Of course, the larger
the impact parameter of a given trajectory, the milder the deviation of of trajectory from the
initial direction. All particles coming in with very large impact parameter are scattered in the
forward direction, and, if all impact parameters contribute, the cross section for forward scattering
is infinite.

The only way to prevent such an unphysical situation is to cut off the impact parameter. Is
this a trick? Not quite. Indeed in nature all scattering problems have this property. Objects
scattering with large impact parameter do not feel the center of force because this is screened
by other interactions (think for instance to the case of Rutherford scattering and the effect of
electrons in screening the nuclei of atoms if the incoming particles are at a distance larger than
the atomic distance), and that prevents any forward scattering physical cross section from being
infinite.

(1.e)

For Coulomb interaction the only difference is that k in all previous formulas can be replaced by
Kq1q2 (for K a given constant, in this case proportional to the electron charge square) and we get
γe = mv20/(Kq1q2) = 2E2/(Kq1q2), such that

dσ
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=

K2q21q
2
2
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. (14)

Problem 2 (Goldstein 3.31)

Calculate the potential due to a force f(r) = kr−3.

V (r) = −
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∣
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∣
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Using equation (3.96) in Goldstein we can calculate the deflection angle with impact parameter s
as

Θ(s) = π − 2
∫
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∫
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.

Notice that from conservation of energy:

E = E(∞) =
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+
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Therefore this integral is

Θ(s) = π − 2s
∫
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∫
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Now in terms of x = Θ/π the above becomes

x = 1−
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Therefore we can solve for the impact parameter

s =
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.

The differential cross section can be expressed in terms of the scattering angle by eq (3.93) in
Goldstein,
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From (15) we can calculate:
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and inverting this we find
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.



Plugging this into (16) we get the desired result:
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=
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=

k

2E

1− x

x2(2− x)2
dx

sin(πx)
.

Problem 3

Starting from the relation between the velocity of the incident particle after scattering in the
laboratory frame (v1) and in the center-of-mass frame (v′

1
),

v1 = V + v′

1
, (17)

where V is the velocity of the center of mass, we can derive that

v1 cos θ = v′1 cosΘ + V → cos θ =
v′1 cosΘ + V

v1
, (18)

as one obtains by projecting Eq. (17) along the direction of the approaching incident particle, and

v21 = (v′1)
2 + V 2 + 2v′1V cosΘ → cosΘ =

v21 − (v′1)
2 − V 2

2v′1V
, (19)

as obtained by squaring Eq. (17). Substituting Eq. (19) into Eq. (18) we can write that

cos θ =
v21 − (v′1)

2 + V 2

2v1V
. (20)

Furthermore, conservation of momentum (and assuming that the second particle is initially at
rest) tells us that

(m1 +m2)V = m1v0 → V =
m1

m1 +m2
v0 , (21)

while, using the kinematic of a two-body system in the center-of-mass frame, we can write that

r′
1
= −

m2

m1 +m2
r → v′1 = ṙ′1 =

m2

m1 +m2
v , (22)

where v = ṙ is the relative velocity after the collision. Finally, we can trade velocities for energies
by using that:

• the energy of the incident particle before scattering in the laboratory frame (E0) is

E0 =
1

2
m1v

2
0 → v0 =

√

2E0

m1
, (23)



• the energy of the incoming particle after scattering in the laboratory frame (E1) is

E1 =
1

2
m1v

2
1 → v1 =

√

2E1

m1
, (24)

• from conservation of energy we have that

Ei −Q = E0 −Q = Ef = ECM +
1

2
µv2 , (25)

where ECM = 1
2
(m1 +m2)V

2, µ = m1m2

(m1+m2)
is the reduced mass of the system, and v = ṙ is

the relative velocity after the collision. Using simple manipulations Eq. (25) gives

1

2
µv20 −Q =

1

2
µv2 → v2 = v20 −

2

µ
Q . (26)

Substituting Eqs. (21)-(26) into Eq. (20) we get,

cos θ =
m1 +m2

2m1

√
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+
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2m1

√
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+
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2m1

√
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. (27)

2 Non-graded Problems

Problem 5 (Goldstein 3.32)

The potential has the form
{

V = 0 r > a
= −V0 r ≤ a

First consider what happens on the interface with the spherical surface that separates the region
with V = 0 from the region with V = −V0. Given the geometry of the problem, it seems obvious
to use spherical coordinates. However, since the problem has azimuthal symmetry, we can use
polar coordinates.

Notice that the force acting on the incoming particle is all in the êr direction (given V (r)).
Thus the linear momentum in the êθ direction is conserved. We can then write

~v1 = −v1 cos θ1êr + v1 sin θ1êθ

~v2 = −v2 cos θ2êr + v2 sin θ2êθ

⇒ v1 sin θ1 = v2 sin θ2 or v2 =
sin θ1
sin θ2

v1.

We can also use conservation of energy for the incoming particle,

E =
1

2
mv21 =

1

2
mv22 − V0

=
1

2
mv21 =

1

2
m
sin2 θ1
sin2 θ2

v21 − V0

⇒
sin2 θ1
sin2 θ2

= 1 +
1

1
2
mv21

V0 = 1 +
V0
E
.



θ1
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θ1 − θ2

θ1 − θ2

êR

êθ

~v1

s ~v2

a

Thus this has exactly the form of Snell’s law! The refractive index is

n =
sin θ1
sin θ2

=

√

E + V0
E

. (28)

Now refer to figure 2. The scattering angle is

Θ = 2(θ1 − θ2)

and the impact parameter s satisfies
s = a sin θ1.

We need to derive s = s(Θ) and insert it into the standard formula for the differential cross-section

σ(Θ) =
s

sin θ

∣

∣

∣

∣
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∣

∣

∣

∣

∣

. (29)

Using (28) we have

n =
sin θ1
sin θ2

=
sin θ1

sin(θ1 − Θ
2
)
.

Inverting this and using some trig. identities we find

1

n
=

sin θ1 cos
Θ
2
− cos θ1 sin

Θ
2

sin θ1
= cos

Θ

2
− cot θ1 sin

Θ

2
. (30)

Now since sin θ1 = s/a we can write

cot θ1 =
cos θ1
sin θ1

=

√

1−
(

s
a

)2

s/a
=

√

(

a

s
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− 1.



Now inserting this relationship into (30), we can solve for s:
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n
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2
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√
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cos Θ

2
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(
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2
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2

,

(

s

a
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=
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2
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2
+
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2
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)2 .

⇒ s2 =
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2
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n
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2

=
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2
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.

now we calculate the quantity

2s
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=
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Θ

2
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=
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2
(
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.

Now plugging this last expression into (29) we find the required result,

σ(Θ) =
s

2 sin Θ
2
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)

=
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2
− 1
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)2 .


