
PHY 5246: Theoretical Dynamics, Fall 2015

Assignment # 8, Solutions

1 Graded problems

1. In coordinates (θ1, θ2) (see figure), we have

T =
1

2
m(bθ̇1)

2 +
1

2
m(bθ̇2)

2

V = mgb(1− cos θ1) +mgb(1− cos θ2) +
1

2
k(b sin θ1 − b sin θ2)

2.

Note the equilibrium length of the spring does not appear because of the manner in which
the problem is presented (unstreched in the equilibrium position). Now we expand these
coordinates about the equilibrium θ0,1 = θ0,2 = 0, and using the small displacements (η1, η2)
we can make the following approximations:

sin θi =
ηi
b
≈ θ, cos θi ≈ 1− 1

2
θ2i = 1− 1

2

η2i
b2
.

Now our energies are

T =
1

2
mη̇2

1
+

1

2
mη̇2

2

V = mgb

[

1−
(

1− 1

2

η2
1

b2

)]

+mgb

[

1−
(

1− 1

2

η2
2

b2

)]

+
1

2
k(η1 − η2)

2,

and our Lagrangian is

L =
1

2
m(η̇2

1
+ η̇2

2
)− mg

2b
(η2

1
+ η2

2
)− 1

2
k(η1 − η2)

2.

Our equations of motion (via Euler-Lagrange) are

mη̈1 +
(

k +
mg

b

)

η1 − kη2 = 0

mη̈2 +
(

k +
mg

b

)

η2 − kη1 = 0.

Using an ansatz ηi = aie
iωt these equations are

−mω2a1 +
(

k +
mg

b

)

a1 − ka2 = 0 (1)

−mω2a2 +
(

k +
mg

b

)

a2 − ka1 = 0. (2)

These equations will have a nontrivial solution only if the determinant vanishes, which gives
us a condition on the eigenfrequencies ω.
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k +
mg

b
−mω2 = ±k −→ ω2 =

k + mg

b
± k

m
−→ ω = ±

√

k + mg

b
± k

m
.

Thus, as expected we have two different eigenfrequencies

ω1 = ±
√

g

b
, ω2 = ±

√

g

b
+ 2

k

m
,

where the ± would be our positive and negative solutions if we wanted to do a full solution
with initial conditions. For our purposes we only want the normal modes, so we define
normal coordinates as

ηi(t) =
∑

j

aijζj(t), ζj(t) = eiωjt.

To find the normal coordinates we first plug ω1 into equation (1)(setting ai = ai1 to match
our normal coordinates), and find

(

k +
mg

b
−m

g

b

)

a11 − ka21 = 0 −→ a11 = a21.

Now plugging ω2 into (2) (and with ai = ai2) we find

−m

(

2k

m
+

g

b

)

a12 +
(

k +
mg

b

)

a12 − ka22 = 0 −→ a12 = −a22.

We could normalize these eigenvectors by simply making their length equal to 1:

a2
11
+ a2

21
= 1 → a11 = a21 =

1√
2

a2
12
+ a2

22
= 1 → a12 = −a22 =

1√
2

The transformation between our small displacements and normal coordinates are then

ηi(t) =
∑

j

aijηj(t) ⇒ ~η(t) =
1√
2

(

1 1
1 −1

)

~η(t).

It turns out that this matrix is it’s own inverse, so the normal coordinates are given by

~ζ(t) =
1√
2

(

1 1
1 −1

)

~η(t) ⇒
ζ1 =

1√
2
(η1 + η2)

ζ2 =
1√
2
(η1 − η2)

.

Now to see what the physical meaning of these modes are, simply set the opposite one
to zero. When ζ1 = 0, we have that η1 = −η2, and we have that ζ2 corresponds to the
antisymmetric mode. When ζ2 = 0, we have η1 = η2 and ζ1 is therefore the symmetric phase
(see figure).

2. Choose coordinates as in the figure. Note here that xi are the small displacements. If the
equilibrium length of the springs is l then we can put our coordinate system with x = 0
on the mass ν, so that the equilibrium positions of the three masses are (−l, 0, l). The
Lagrangian for this system is simply

L =
1

2
µ(ẋ2

1
+ ẋ2

3
) +

1

2
νẋ2

2
− 1

2
k[(x1 − x2)

2 + (x2 − x3)
2].



Antisymmetric Mode

Symmetric Mode

(2.a)

In these coordinates, the equations of motion are
∑

j

(Tij ẍj + Vijxj) = 0,

where the matrices are

T =





µ
ν

µ



 , V = k





1 −1 0
−1 2 −1
0 −1 1



 .

Using the ansatz
xj(t) = aje

iωt

we get the eigenequation
(V −Tω2)~a = 0,

which has nontrivial solutions if and only if the determinant vanishes:

|V −Tω2| =

∣

∣

∣

∣

∣

∣

k − µω2 −k 0
−k 2k − νω2 −k
0 −k k − µω2

∣

∣

∣

∣

∣

∣

= 0

= ω2(k − µω2)(µνω2 − 2kµ− kν) = 0.

The solutions to this characteristic polynomial are

ω1 =

√

k

µ
, ω2 =

√

k

µ

(

1 + 2
µ

ν

)

, ω3 = 0.



These are the normal frequencies. To find the normal modes, generalize our solution to
include a sum of these normal modes xj(t) =

∑

k ajke
iωkt, and so we solve

∑

j

(Vij − Tijωk)ajk = 0 →





(k − ωkµ)a1k −ka2k 0
−ka1k (2k − ω2

kν)a2k −ka3k
0 −ka2k (k − ω2

kµ)a3k



 = 0 (3)

for k = 1, 2, 3. First, setting k = 1 we see from the first line of (3) that a21 = 0, and from
the second line that a11 = −a31. Thus our eigenvector is

a1 = a11





1
0
−1



 (4)

The constant a11 is free, and could be fixed with normalization conditions. For k = 2 we
first see from the second line of (3) that a22 = −2µ

ν
a32, and plugging this into the first line

we also see that a12 = a32. Thus our second eigenvector is

a2 = a32





1
−2µ

ν

1



 (5)

With k = 3 in (3) we see immediately that a13 = a23 and a23 = a33 so we find

a3 = a13





1
1
1



 (6)

Applying the normalization condition
∑

i,j

Tijairajs = δrs ,

we find

a11 = =
1√
2µ

, (7)

a32 = =
1

√

2µ
(

1 + 2µ

ν

)

a13 =
1√

2µ+ ν
. (8)

Now we can simply invert the equation

xj =
∑

i

aijζj

to find the normal modes ζj . The solution is

ζ1 =

√

µ

2
(x1 − x3)

ζ2 =

√

µν

2(2µ+ ν)
[x1 − 2x2 + x3]

ζ3 =
1√

2µ+ ν
(µx1 + νx2 + µx3).



In the first normal mode (see figure (a)), x1 = −x3, so the two outer masses vibrate out
of phase by 180◦ and with equal amplitudes. The central mass remains fixed (with zero
amplitude). In the second mode (figure (b)), x1 = x3, so the two outer masses vibrate in
phase at frequency ω2 and with equal amplitudes. Because x2 = −2x1µ/ν, the central mass
vibrates out of phase by 180◦ at the same frequency and with 2µ/ν times the amplitude. In
the first and second modes the center of mass remains stationary. In the third normal mode
(figure (c)), x1 = x2 = x3, so the system moves as a whole. The center of mass moves at
some fixed velocity v. Clearly there is no force. This is only due to translation of the CM.

(2.b)

The full solution to this problem is

~x(t) = ~a1(C1e
iω1t + C∗

1
e−iω1t) +~a2(C2e

iω2t + C∗
2
e−iω2t) +~a3(C + v0t),

where we have required that the solution be real and the motion associated with the CM
has the form C + vot, ie constant translations in time.

(2.c)

The initial conditions along with the general solution above lead to a set of linear equations:

x1(0) = C1 + C∗
1
+ C2 + C∗

2
+ C = −A

x2(0) = −2
µ

ν
(C2 + C∗

2
) + C = A

µ

ν
x3(0) = −(C1C

∗
1
) + C2 + C∗

2
+ C = 0

ẋ1(0) = iω1(C1 − C∗
1
) + iω2(C2 − C∗

2
) + v0 = 0

ẋ2(0) = −2
µ

ν
iω2(C2 − C∗

2
) + v0 = 0

ẋ3(0) = −iω1(C1 − C∗
1
) + iω(C2 − C∗

2
) + v0 = 0.

There are most easily solved with a matrix method,
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




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

Using standard reduction techniques one can see that the solution to this equation is

C = v0 = 0,

C1 = C2 = −A

4
.
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Thus the solution is

~x(t) = −A

2





cosω1t + cosω2t
−2µ

ν
cosω2t

− cosω1t+ cosω2t





This situation is shown in figure (d). The CM remains fixed, the central mass performs simple
harmonic motion at ω2 and the other two masses move in a combination of the frequencies ω1

and ω2. If these two frequencies are close to each other, we have the phenomena of beating,
although it is out of phase. In other words, when the amplitude of one of them is small, the
amplitude of the other is large.


