
PHY 5246: Theoretical Dynamics, Fall 2015

Assignment # 9, Solutions

1 Graded Problems

Problem 1

(1.a)
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In order to find the equation of motion of the triangle,
we need to write the Lagrangian, with generalized coor-
dinate {θ}. The potential energy is going to be based on
the location of the center of mass, and we find that via
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where the density is ρ. This is as expected by symmetry
considerations and by the fact that the CM has to be at the geometrical center of the triangle,
i.e. at one third of it’s height,
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Note the negative sign is because the triangle lies below the x-axis. So, for generalized θ,
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and the potential energy is
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To calculate the kinetic energy,

T = Trot(about 0) =
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2,

we need first to find the principal moment of inertia about the axis of rotation, which is an axis
perpendicular to the plane of the triangle, through 0. This is the only moment of inertia we need,



since

~ω = θ̇ê3 and therefore,
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Therefore
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The equation of motion for our generalized coordinate is

d
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Under small oscillations about θ = 0 this is the equation for a simple harmonic oscillator with
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For this situation, the θ = 0 position of the CM is
yCM(θ = 0) = − l√

3
. Therefore
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cos θ ⇒ U = −mg
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We need to calculate the moment of inertia I3 with re-
spect to the new center of rotation (and axis through
it).
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Thus the kinetic energy and Lagrangian are
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and the equation of motion is
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Problem 2
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The cube rotates about the side perpendicular to the plane of the figure, through 0. We are
therefore referring to the case in which the frame has axes parallel to the side of the cube and
origin at one corner. In figure (1), the cube is rotating about the back side, along the y-axis. The
corresponding moment of inertia is I22 =

2
3
ml2 (also see p. 409-410 in Goldstein). We can find the

angular velocity of the cube when one face strikes the plane, by imposing conservation of energy:
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Figure 1:

(b)

If the cube can slide, there is no more fixed point. So, we have to calculate the kinetic energy as
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where:
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and when θ = 45circ, the cube hits the plane. With ω(θ = 45◦) = ωf , we have
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We could also have calculated the kinetic energy as
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Now use v = Rθ̇ to find vCM = l√
2
ωf , and on p. 422 of Goldstein we can find ICM
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6
. We

thus obtain the same answer as above.



Problem 3 (Goldstein 5.17)

Take M as the mass of the cone, (x′
1, x

′
2, x

′
3) as the principal axes going through the CM, which

is at (0, 0, a = 3
4
h) in the body system. x′

3 is the cone axis, x′
2 is perpendicular to the plane going

through x′
3 and the segment OA, and x′

1 is orthogonal to the plane of x′
2 and x′

3. As stated in
the problem, R is the radius, h is the height and α is the half-angle of the cone. Due to the
condition of no-slipping, the angular velocity of the cone, ~ω, is directed along the instantaneous
axis of rotation which is the line of contact between the surface of the cone and the surface on
which the cone is rolling (i.e. along the segment OA, see figure).
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The kinetic energy (T ) can be calculated either using the center of mass as origin and taking as
reference frame the system of principal axes described above, or using a system of axes parallel to
that one but with origin at the apex of the cone O, which is a fixed point for the body.

In the first case, the kinetic energy is given by the sum of two terms: the kinetic energy of the

center of mass (i.e. the kinetic energy of a pointlike object of mass M located at the CM of the
cone and moving as CM moves) and the kinetic energy of the body as rotating about the center
of mass (expressed in terms of the principal moments of inertia and the component of the angular
velocity in the principal axes frame or body frame),
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In the above equation we have used that vCM = a cosαθ̇ as it rotates about x̂3. This implies that
ω (angular velocity about OA) and θ̇ are related. Thus we also have

vCM = a sinαω.

Combining these two relations we find

ω =
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The components of ~ω in the body frame are
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To get this last line we used a = 3
4
h, R = h tanα, and the next line uses the trigonometric identity,
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In the second case, the kinetic energy is purely rotational, since O is a fixed point, and is given
by:
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where J1 and J3 are the principal moments of inertia with respect to a system of axes parallel to
the ones drawn in the picture and with origin in O. They can be found using Steiner’s theorem
and they are simply given by:

J1 = I1 +M(a2 − a1a1) = I1 +Ma2 ,

J3 = I3 +M(a2 − a3a3) = I3 ,

where we have used that ~a = (0, 0,−a) is the position vector of O in the CM frame. It is then
easy to see that,
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(b)

The components of the angular momentum are given by
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= I1ω1ê
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Problem 4
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In this problem the body axes are the principal axes, and ~ω can
move in the the body fixed frame. It’s easy to see that the plane is
a symmetric top. Therefore, in absence of forces ~L will be constant
and ~ω will precess around it.

Let us calculate the moments of inertia explicitly:
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The velocity with which ~ω precesses about ~L is (see discussion in class and in the text):
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2 Non-graded Problems

Problem 5
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Take a generic point P and the principal axis going through it (see
figure). The principal moments of inertia are
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The equality in the above statement occurs when xk = 0. Here we
have assumed that i 6= j 6= k for i, j, k = 1, 2, 3.

Problem 6
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Using cylindrical coordinates,

{ x = r cos θ
y = r sin θ
z = z,

and we have that r = (R/h)z. First determine the inertia tensor
with respect to 0:
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By symmetry we can also say that the non diagonal terms are zero (each of the chosen axes is a
symmetry axis for the cone). These can also be shown explicitly. For instance:
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1
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0
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0
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This vanishes because xy = r2 sin θ cos θ and
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Now in a similar way the other two vanish
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So, the chosen Cartesian axes are also principal axes with respect to the origin, and
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To obtain ÎCM , we need first to determine (xCM , yCM , zCM). By symmetry, we know xCM =
yCM = 0, while:
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Finally, we can apply the generalized form of Steiner’s parallel axis theorem, according to which

(ICM)ij = (I0)ij −M
[
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]

,

which in our case ~a = (0, 0, 3
4
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and the non diagonal elements are still all zero.



Problem 7
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Figure 2:

Defining ρ as the mass density, we use polar coordinates
{

x = r cos θ
y = r sin θ

Given a coordinate system (x′, y′) which rotates with the disk (see
figure (3)), the location of the CM is x̄CM = 0 and

ȳCM =
ρ

M

{
∫
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dxdyy + 2

∫
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dxdyy

}

=
ρ

M

{

∫ R

0
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∫ π
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dθr sin θ + 2
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Where in the last line we have used

M = ρ
πR2

2
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2
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3

2
ρπR2.

Again referencing Figures (2) and (3) we see that the relationship
between the lab coordinates and the coordinates of the center of
mass are

{ xCM = Rθ − |ȳCM | sin θ = Rθ − 4R
9π

sin θ
yCM = R − |ȳCM | cos θ = R− 4R

9π
cos θ.

⇓
{ ẋCM = Rθ̇ − 4R

9π
cos θθ̇

ẏCM = 4R
9π

sin θθ̇.

The kinetic energy of the disk is made of 2 terms:

T = Ttrans + Trot,

where Ttrans is the translational kinetic energy of the mass M with coordinates (xCM , yCM) and
velocity (ẋCM , ẏCM), and Trot is the rotational kinetic energy about the center of mass. Thus

T =
1

2
M(ẋ2

CM + ẏ2CM) +
1

2
I3θ̇

2.

Here I3 is the moment of inertia about the CM, with respect to the z-axis, perpendicular to the
plane of the figure. To find I3 we will calculate it with respect to the center of disk (since it is
easier!) and use Steiner’s theorem to obtain it with respect to the CM.

I3
∣

∣

∣

0
= ρ

∫ R

0
drr
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Then we can calculate the kinetic energy

T = Ttrans + Trot =
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The potential energy must also be defined with respect to the center of mass,

U = MgyCM = MgR
[
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,

and the Lagrangian is the sum of these two terms,
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Figure 3:


