PHY 5667 : Quantum Field Theory A, Fall 2015

September $3^{\text {rd }}, 2015$
Assignment \# 2
(due Thursday September $10^{\text {th }}$, 2015)

1. Let us write the infinitesimal form of a Lorentz transformation in the vector representation as

$$
\Lambda_{\sigma}^{\rho}=\delta_{\sigma}^{\rho}-\frac{i}{2} \delta \omega_{\mu \nu}\left(J_{V}^{\mu \nu}\right)_{\sigma}^{\rho}
$$

where

$$
\left(J_{V}^{\mu \nu}\right)_{\sigma}^{\rho}=i\left(g^{\mu \rho} \delta_{\sigma}^{\nu}-g^{\nu \rho} \delta_{\sigma}^{\mu}\right),
$$

are matrices in the vector representation of the Lorentz generators ($g^{\mu \nu}$ denotes the metric tensor in Minkowski space and δ_{μ}^{ν} is the Kronecker δ in four dimensions).
1.a) Write Λ_{ν}^{μ} for a rotation by an angle θ about the x axis, and show that,

$$
\Lambda=\exp \left(-i \theta J_{V}^{23}\right)
$$

1.b) Write Λ_{ν}^{μ} for a boost by rapidity η in the z direction, and show that,

$$
\Lambda=\exp \left(i \eta J_{V}^{30}\right)
$$

2. Given the generators of the Lorentz algebra $J^{\mu \nu}$, defined by

$$
\left[J^{\mu \nu}, J^{\rho \sigma}\right]=i\left(g^{\mu \sigma} J^{\nu \rho}+g^{\nu \rho} J^{\mu \sigma}-g^{\mu \rho} J^{\nu \sigma}-g^{\nu \sigma} J^{\mu \rho}\right),
$$

2.a) define the generators of rotations and boosts as

$$
L^{i}=\frac{1}{2} \epsilon^{i j k} J^{j k}, \quad K^{i}=J^{i 0} \quad(i, j=1,2,3)
$$

and show that an infinitesimal Lorentz transformation (acting on a generic object ϕ) can be written as:

$$
\phi \rightarrow(1-i \vec{\theta} \cdot \vec{L}+i \vec{\eta} \cdot \vec{K}) \phi
$$

Write the commutation relations of these vector operators explicitly (for example: $\left.\left[L_{i}, L_{j}\right]=\ldots\right)$. Show that the combinations

$$
\vec{J}_{ \pm}=\frac{1}{2}(\vec{L} \pm i \vec{K})
$$

commute with one another and separately satisfy the commutation relations of angular momentum (i.e. of $\mathrm{SU}(2)$).
2.b) Explain why the result of part (2.a) implies that all finite-dimensional representations of the Lorentz group correspond to pairs of integers or half-integers $\left(j_{-}, j_{+}\right)$, corresponding to pairs of representations of the rotation group. Using the fact that $\vec{J}=\vec{\sigma} / 2$ in the spin- $1 / 2$ representation of the angular momentum, write explicitly the transformation laws of the 2-component objects transforming according to the $\left(\frac{1}{2}, 0\right)$ (call it $\left.\psi_{L}\right)$ and $\left(0, \frac{1}{2}\right)\left(\right.$ call it $\left.\psi_{R}\right)$ representations of the Lorentz group.
2.c) Using the identity $\vec{\sigma}^{T}=-\sigma^{2} \vec{\sigma} \sigma^{2}$ show that an object that transforms according to the $\left(\frac{1}{2}, \frac{1}{2}\right)$ representation can be represented as a (2×2) matrix that has the ψ_{R} transformation law on the left and the transposed ψ_{L} transformation law on the right. Parametrize this matrix as

$$
\left(\begin{array}{cc}
V^{0}+V^{3} & V^{1}-i V^{2} \\
V^{1}+i V^{2} & V^{0}-V^{3}
\end{array}\right)
$$

and show that the object V^{μ} is a 4 -vector.

