PHY 5667 : Quantum Field Theory A, Fall 2015

September
$$3^{rd}$$
, 2015
Assignment # 2
(due Thursday September 10^{th} , 2015)

1. Let us write the infinitesimal form of a Lorentz transformation in the vector representation as

$$\Lambda^{\rho}_{\sigma} = \delta^{\rho}_{\sigma} - \frac{i}{2} \delta \omega_{\mu\nu} (J^{\mu\nu}_V)^{\rho}_{\sigma} ,$$

where

$$(J_V^{\mu\nu})^{\rho}_{\sigma} = i \left(g^{\mu\rho} \delta^{\nu}_{\sigma} - g^{\nu\rho} \delta^{\mu}_{\sigma} \right) \quad ,$$

are matrices in the vector representation of the Lorentz generators $(g^{\mu\nu})$ denotes the metric tensor in Minkowski space and δ^{ν}_{μ} is the Kronecker δ in four dimensions).

1.a) Write Λ^{μ}_{ν} for a rotation by an angle θ about the x axis, and show that,

$$\Lambda = \exp\left(-i\theta J_V^{23}\right) \quad .$$

1.b) Write Λ^{μ}_{ν} for a boost by rapidity η in the z direction, and show that,

$$\Lambda = \exp\left(i\eta J_V^{30}\right)$$

2. Given the generators of the Lorentz algebra $J^{\mu\nu}$, defined by

$$[J^{\mu\nu}, J^{\rho\sigma}] = i \left(g^{\mu\sigma} J^{\nu\rho} + g^{\nu\rho} J^{\mu\sigma} - g^{\mu\rho} J^{\nu\sigma} - g^{\nu\sigma} J^{\mu\rho} \right)$$

2.a) define the generators of rotations and boosts as

$$L^{i} = \frac{1}{2} \epsilon^{ijk} J^{jk}$$
, $K^{i} = J^{i0}$ $(i, j = 1, 2, 3)$,

and show that an infinitesimal Lorentz transformation (acting on a generic object ϕ) can be written as:

$$\phi \to (1 - i\vec{\theta} \cdot \vec{L} + i\vec{\eta} \cdot \vec{K})\phi$$
 .

Write the commutation relations of these vector operators explicitly (for example: $[L_i, L_j] = \ldots$). Show that the combinations

$$\vec{J}_{\pm} = \frac{1}{2} \left(\vec{L} \pm i \vec{K} \right)$$

commute with one another and separately satisfy the commutation relations of angular momentum (i.e. of SU(2)).

- 2.b) Explain why the result of part (2.a) implies that all finite-dimensional representations of the Lorentz group correspond to pairs of integers or half-integers (j_-, j_+) , corresponding to pairs of representations of the rotation group. Using the fact that $\vec{J} = \vec{\sigma}/2$ in the spin-1/2 representation of the angular momentum, write explicitly the transformation laws of the 2-component objects transforming according to the $(\frac{1}{2}, 0)$ (call it ψ_L) and $(0, \frac{1}{2})$ (call it ψ_R) representations of the Lorentz group.
- **2.c)** Using the identity $\vec{\sigma}^T = -\sigma^2 \vec{\sigma} \sigma^2$ show that an object that transforms according to the $(\frac{1}{2}, \frac{1}{2})$ representation can be represented as a (2×2) matrix that has the ψ_R transformation law on the left and the transposed ψ_L transformation law on the right. Parametrize this matrix as

$$\left(\begin{array}{cc} V^0 + V^3 & V^1 - iV^2 \\ V^1 + iV^2 & V^0 - V^3 \end{array}\right) \;\;,$$

and show that the object V^{μ} is a 4-vector.