PHY 5667 : Quantum Field Theory A, Fall 2015

September $10^{\text {th }}, 2015$
Assignment \# 3
(due Thursday September $24^{\text {th }}$, 2015)

1. Consider a system of fields $\phi_{i}(x)$ and a Lorentz transformation acting on both field and coordinates as follows,

$$
\begin{aligned}
x^{\prime \mu} & =\Lambda_{\nu}^{\mu} x^{\nu} \simeq x^{\mu}+\sum_{k=1}^{6} \alpha_{k} X_{k}^{\mu}+O\left(\alpha^{2}\right), \\
\phi_{i}^{\prime}\left(x^{\prime}\right) & =L_{i j}(\Lambda) \phi_{i}(x) \simeq \phi_{i}(x)+\sum_{k=1}^{6} \alpha_{k} A_{i j, k} \phi_{i}(x)+O\left(\alpha^{2}\right),
\end{aligned}
$$

where $L(\Lambda)$ denote the representation of the Lorentz group on the space of the fileds $\phi_{i}(x)$. Show that if the action S,

$$
S=\int d^{4} x \mathcal{L}\left(\phi_{i}(x), \partial_{\mu} \phi_{i}(x), x\right),
$$

associated to the system of fields is invariant under such transformation, there are six conserved currents (Noether's currents) of the form,

$$
M_{\rho \sigma}^{\mu}=T_{\rho}^{\mu} x_{\sigma}-T_{\sigma}^{\mu} x_{\rho}-\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{i}(x)\right)} A_{i j, \rho \sigma} \phi_{j}(x)
$$

where $T^{\mu \nu}$ is the energy-momentum tensor associated to the system of fields, and six conserved charges. How are the charges defined? How can you interpret the components of $M_{\rho \sigma}^{\mu}$ due to the transformation of the coordinates and to the trasformation of the fields respectively? Explain your reasoning.
2. Classical electromagnetism (with no sources) follows from the action,

$$
S=\int d^{4} x\left(-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}\right), \quad \text { where } F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}
$$

as you have derived in your first homework. Construct the energy-momentum tensor for this theory. Notice that the usual procedure does not result in a symmetric tensor. Show that you can remedy that using a tensor $K^{\lambda \mu \nu}$ antisymmetric in its first two indices (you will have to build a new energy-momentum tensor $\hat{T}^{\mu \nu}=T^{\mu \nu}+\ldots$ where the dots stays for a function of $K^{\lambda \mu \nu}$). In particular show that

$$
K^{\lambda \mu \nu}=F^{\mu \lambda} A^{\nu},
$$

leads to the standard formulae for the electromagnetic energy and momentum densities:

$$
\mathcal{E}=\frac{1}{2}\left(E^{2}+B^{2}\right), \quad \mathbf{S}=\mathbf{E} \times \mathbf{B} .
$$

3. Recall that $T(a)^{-1} \phi(x) T(a)=\phi(x-a)$, where $T(a) \exp \left(i P^{\mu} a_{\mu}\right)$ is the spacetime translation operator, and P^{0} is identified as the hamiltonian H.
3.a) Let a^{μ} be infinitesimal, and derive an expression for $\left[\phi(x), P^{\mu}\right]$.
3.b) Show that the time component of your result is equivalent to the Heisenberg equation of $i \dot{\phi}=[\phi, H]$.
3.c) For a free field, use the Heisenberg equation to derive the Klein- Gordon equation.
3.d) Define a spatial momentum operator

$$
\mathbf{P}=-\int d^{3} x \Pi(x) \nabla \phi(x)
$$

Use the canonical commutation relations to show that P obeys the relation you derived in part 3.a).
3.e) Express \mathbf{P} in terms of $a(\mathbf{k})$ and $a^{\dagger}(\mathbf{k})$.
4. Problem 2.2 of Peskin and Schroeder's book.

