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We mentioned in the Introduction that quantum field theory (QFT) is
a synthesis of the principles of quantum mechanics and of special rel-
ativity. Our first task will be to understand how Lorentz symmetry is
implemented in field theory. We will study the representations of the
Lorentz group in terms of fields and we will introduce scalar, spinor,
and vector fields. We will then examine the information coming from
Poincaré invariance. This chapter is rather mathematical and formal.
The effort will pay, however, since an understanding of this group the-
oretical approach greatly simplifies the construction of the Lagrangians
for the various fields in Chapter 3 and gives in general a deeper under-
standing of various aspects of QFT.
From now on we always use natural units Ai=c=1.

2.1 Lie groups

Lie groups play a central role in physics, and in this section we recall
some of their main properties. In the next sections we will apply these
concepts to the study of the Lorentz and Poincaré groups.

A Lie group is a group whose elements g depend in a continuous and
differentiable way on a set of real parameters 6%, a = 1, ..., N. Therefore
a Lie group is at the same time a group and a differentiable manifold.
We write a generic element as ¢(f) and without loss of generality we
choose the coordinates 8% such that the identity element e of the group
corresponds to 8% = 0, i.e. g(0) =e.

A (linear) representation R of a group is an operation that assigns to
a generic, abstract element g of a group a linear operator Dg(g) defined
on a linear space,
' g+~ Dr(g) (2.1)

with the properties that

(i): Dr(e) =1, where 1 is the identity operator, and

(#1): Dr(g1)Dr(g2) = Dr(g192), so that the mapping preserves the
group structure.

The space on which the operators Dg act is called the basis for the

representation R. A typical example of a representation is a matriz rep-
resentation. In this case the basis is a vector space of finite dimension
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LTo be precise, this is only true for the
component of the group manifold con-
nected with the identity.

14 Lorentz and Poincaré symmetries in QFT

n, and an abstract group element g is represented by a n X n matrix
(Dr(9)) ;, with i,j = 1,...,n. The dimension of the representation
is defined as the dimension n of the base space. Writing a generic el-
ement of the base space as (¢!, ...,4"), a group element g induces a
transformation of the vector space

¢ — (Dr(9)) ;¢ - (2.2)

Equation (2.2) allows us to attach a physical meaning to a group ele-
ment: before introducing the concept of representation, a group element
g is just an abstract mathematical object, defined by its composition
rules with the other group members. Choosing a specific representation
instead allows us to interpret g as a transformation on a certain space;
for instance, taking as group SO(3) and as base space the spatial vectors
v, an element g € SO(3) can be interpreted physically as a rotation in
three-dimensional space.

A representation R is called reducible if it has an invariant subspace,
ie. if the action of any Dg(g) on the vectors in the subspace gives
another vector of the subspace. Conversely, a representation with no
invariant subspace is called irreducible. A representation is completely
reducible if, for all elements g, the matrices D r(g) can be written, with
a suitable choice of basis, in block diagonal form. In other words, in a
completely reducible representation the basis vectors ¢* can be chosen
so that they split into subsets that do not mix with each other under
eq. (2.2). This means that a completely reducible representation can be
written, with a suitable choice of basis, as the direct sum of irreducible
representations.

Two representations R, R’ are called equivalent if there is a matrix
S, independent of g, such that for all g we have Dr(g) = S~1Dgr/(g)S.
Comparing with eq. (2.2), we see that equivalent representations corre-
spond to a change of basis in the vector space spanned by the ¢¢.

When we change the representation, in general the explicit form and
even the dimensions of the matrices Dr(g) will change. However, there
is an important property of a Lie group that is independent of the rep-
resentation. This is its Lie algebra, which we now introduce.

By the assumption of smoothness, for #% infinitesimal, i.e. in the
neighborhood of the identity element, we have

Dr(6) ~1+i8,Tg, (2.3)

with oD
_ _;9UR !
T = —t B0 1) (2.4)

The T2 are called the generators of the group in the representation R.
1t can be shown that, with an appropriate choice of the parametrization
far from the identity, the generic group elements g(0) can always be
represented by!

Dr(g(8)) = e T%, (2.5)
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" are hermitian, then the matrices Dr(g) are unitary. In this case R is a
 upitary representation.

- Given two matrices D r(91) = exp(ia,T8) and Dg(g2) = exp(iB.TE),

y their product is equal to Dgr(g192) and therefore must be of the form

’gxp{ééﬂ}%), for some 8, (a, ),
i '@ TR piBaTh — o#0uTh (2.6)

Observe that T3 is a matrix. If A, B are matrices, in general eef #
et P 50 in general 6, # ag + Ba. Taking the logarithm and expanding
up to second order in o and 3 we get

16,18 = log { [1+ 0TS + %(maT;;)?]u F 0T 4 %(iﬁaT§)2]} (2.7)

, 1 1
=log |1+ (s + Bu)TE — E(aaTg)Z — E(ﬁaT;;)? - aaﬁngTgJ ;
Expanding the logarithm, log(1 + z) ~ 2 — 2%/2, and paying attention
to the fact that the T% do not commute we get

am@b [T}%, Tg!] — Z"}’(_-((l', ﬁ)T}ci ’

with (e, B) = —2(8c(e, 8) — e — B.). Since this must be true for all
& and 3, 7. must be linear in o, and in S3,, so the relation between -
and a, # must be of the general form v, = a,B:f**, for some constants
f°.. Therefore

(2.8)

@505 =af® e, - (2.9)

This is called the Lie algebra of the group under consideration. T'wo im-
portant points must be noted here. The first is that, even if the explicit
form of the generators 7* depends on the representation used, the struc-
ture constants f°°, are independent of the representation. In fact, if feb,
were to depend on the representation, v* and therefore 4% would also
depend on R, so it would be of the form 6% (c, 8). Then from eq. (2.6)
we would conclude that the product of the group elements g; and g3
glves a result which depends on the representation. This is impossible,
since the result of the multiplication of two abstract group element g; o
18 a property of the group, defined at the abstract group level without
any reference to the representations. Therefore, we conclude that f2°,
are independent of the representation.? The second important point is
that this equation has been derived requiring the consistency of eq. (2.6)
to second order; however, once this is satisfied, it can be proved that no
further requirement comes from the expansion at higher orders.

Thus the structure constants define the Lie algebra, and the problem
of finding all matrix representations of a Lie algebra amounts to the
algebraic problem of finding all possible matrix solutions T8 of eq. (2.9).
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2Act"ua.11y, the generators of a Lie group
can'even be defined without making
any reference to a specific represen-

tation. One makes use of the fact
that a Lie group is also a manifold,
parametrized by the coordinates 62,
and defines the generators as a basis of
the tangent space at the origin. One
then proves that their commutator (de-
fined as a Lie bracket) is again a tan-
gent vector, and therefore it must be a
linear combination of the basis vector.
In this approach no specific represen-
tation is ever mentioned, so it becomes
obvious that the structure constants are
independent of the representation. See,
e.g., Nakahara (1990), Section 5.6.
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A group is called abelian if all its elements commute between them-
} ' selves, otherwise the group is non-abelian. For an abelian Lie group
X ' the structure constants vanish, since in this case in eq. (2.6) we have
8y = g + Ba. The representation theory of abelian Lie algebras is very
simple: any d-dimensional abelian Lie algebra is isomorphic to the di-
rect sum of d one-dimensional abelian Lie algebras. In other words, all
irreducible representations of abelian groups are one-dimensional. The
non-trivial part of the representation theory of Lie algebras is related to
the non-abelian structure.

In the study of the representations, an important role is played by

the Casimir operators. These are operators constructed from the T
that commute with all the 7. In each irreducible representation, the
Clasimir operators are proportional to the identity matrix, and the pro-
portionality constant labels the representation. For example, the angu-
) lar momentum algebra is [J%, J7] = ieti* J* and the Casimir operator is
J2. On an irreducible representation, J? is equal to j(j + 1) times the
identity matrix, with j =0, 3,1,....
. ' A Lie group that, considered as & manifold, is a compact manifold is
called a compact group. Spatial rotations are an example of a compact
Lie group, while we will see that the Lorentz group is non-compact. A
theorem states that non-compact groups have no unitary representations
of finite dimension, except for representations in which the non-compact
generators are represented trivially, i.e. as zero. The physical rele-
vance of this theorem is due to the fact that in a unitary representation
the generators are hermitian operators and, according to the rules of
quantum mechanics, only hermitian operators can be identified with ob-
servables. If a group is non-compact, in order to identify its generators
with physical observables we need an infinite-dimensional representa-
tion. We will see in this chapter that the Lorentz and Poincaré groups
are non-compact, and that infinite-dimensional representations are ob-
tained introducing the Hilbert space of one-particle states.

e R PRy S

2.2 The Lorentz group

The Lorentz group is defined as the group of linear coordinate transfor-

mations,
¥ — o't = A g (2.10)

which leave invariant the quantity

Nuwzhe” = 2 —z? —y? - 27, (211}

The group of transformations of a space with coordinates (Y15 - - Ym:
#1,...Tn), which leaves invariant the quadratic form (y? +...+yd) —
(z? + ...+ x3) is called the orthogonal group O(n,m), so the Lorentz
group is O(3,1). The condition that the matrix A must satisfy in order
to leave invariant the quadratic form (2.11) is ‘

N2tz = N (AL, 2P YA 27 ) = WartaT (2.12)8

S



2.2 The Lorentz group 17

& .Sin{:e this must hold for = generic, we must have
Moo = MuwAF,AY ;. (2.13)

In matrix notation, this can be rewritten as n = ATpA. Taking the de-
terminant of both sides, we therefore have (det A)?2 = 1 or det A = £1.
Transformations with det A = —1 can always be written as the product
of a transformation with det A = 1 and of a discrete transformation that
reverses the sign of an odd number of coordinates, e.g. a parity trans-
formation (f,z,y,2) — (t,—z,—y, —z), or a reflection around a single
spatial axis (¢, z,y,z) — ({, —2,9, 2), or a time-reversal transformation,
(t,r.y,%2) = (—t,2,¥,2). Transformations with det A = +1 are called
proper Lorentz transformations. The subgroup of O(3, 1) with det A =1
is denoted by SO(3,1).
Writing explicitly the 00 component of eq. (2.13) we find

3
! 1= (A%)2 - 3 (A%o)? (2.14)
i=1

?‘ which implies that (A%)? > 1. Therefore the proper Lorentz group
has two disconnected components, one with AOO = 1 and one with
A% < -1, called orthochronous and non-orthochronous, respectively.
Any non-orthochronous transformation can be written as the product
of an orthochronous transformation and a discrete inversion of the type
(t,z,y,2) —» (-t,—z,—y,—2), or (t,z,y,2) — (—t,—=z,y,2), etc. It is
convenient to factor out all these discrete transformations, and to rede-
fine the Lorentz group as the component of SO(3,1) for which A%, > 1.
If we consider an infinitesimal transformation

A#, = 85 4w, (2.15)

eq. (2.13) gives

Wy = —Wyy - (216)

An antisymmetric 4 x 4 matrix has six independent elements, so the
Lorentz group has six parameters. These are easily identified: first

of all we have the transformations which leave ¢ invariant. This is .
Jjust the SO(3) rotation group, generated by the three rotations in the s
(z.y), (z,2) and (y, z) planes. Furthermore, we have three transforma-

tions in the (t,z), (¢,¥) and (¢, z) planes that leave invariant ¢ — 22, etc.

A transformation that leaves t? — 2 invariant is called a boost along the

T axis, and can be written as

t—y(t+vz), z—yz+ot). (2.17)

with v = (1 — v?)71/2 and —1 < v < 1. Its physical meaning is un-
derstood looking at the small v limit, where it reduces to the velocity
transformation of classical mechanics. It is therefore the relativistic gen-
eralization of a velocity transformation. The six independent parameters
of the Lorentz group can therefore be taken as the three rotation angles
and the three components of the velocity v.
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Since —1 < v < 1, we can write v = tanh7, with —co <7 < +00.
Then v = coshn and eq. (2.17) can be written as a hyperbolic rotation,

t — (coshn)t + (sinhn)z
z — (sinhn)t + (coshn)z. (2.18)

The variable 7 is called the rapidity.
We see that the Lorentz group is parametrized in a continuous and

differentiable way by six parameters, and it is therefore a Lie group.
However, in the Lorentz group one of the parameters is the modulus
of the boost velocity, |v|, which ranges over the non-compact interval
0 < |v|] < 1. Therefore the Lorentz group is non-compact.

2.3 The Lorentz algebra

We have seen that the Lorentz group has six parameters, the six inde-
pendent elements of the antisymmetric matrix wy,, to which correspond
six generators. It is convenient to label the generators as J*¥, with a

pair of antisymmetric indices (u,v), so that J# = —J¥#_ A generic
' element A of the Lorentz group is therefore written as
i A = e~ Bum T (2.19)

The factor 1/2 in the exponent compensates for the fact that we are
summing over all j1, v rather than over the independent pairs with p < v,
and therefore each generator is counted twice.

By definition a set of objects ¢, with i = 1,...,n, transforms in a
representation R of dimension n of the Lorentz group if, under a Lorentz
transformation, _

; i v]? :
¢ — [emtonTh ] & (2.20)
)

where exp{—(i/2)wuJ% } is a matrix representation of dimension n of
the abstract element (2.19) of the Lorentz group; J§” are the Lorentz
generators in the representation R, and are n x n matrices. Under
an infinitesimal transformation with infinitesimal parameters wy., the

variation of ¢* is

8¢t = —%w”y{Jg“)i i (2.21)

In (J4")?, the pair of indices p, v identify the generator while the indices
i,j are the matrix indices of the representation that we are considering.

All physical quantities can be classified accordingly to their transfor-
mation properties under the Lorentz group. A scalar is a quantity that is
invariant under the transformation. A typical Lorentz scalar in particle
physics is the rest mass of a particle. A contravariant four-vector V# is -
defined as an object that satisfies the transformation law

VE o ARV, (2.22)

with A%, defined by the condition (2.13). A covariant four-vector Vi
transforms as V,, — A,“V,, with A,” = n,,n"7A#5. One immediately




rifies that, if V# is a contravariant four-vector, then V, =,, V" is a
iant four-vector. We refer generically to covariant and contravari-
four-vectors simply as four-vectors. The space-time coordinates z*
the sunplest example of four-vector. Another particularly important
‘example is given by the four-momentum p* = (E, p).

 The explicit form of the generators (Ji”)* ; as n X n matrices depends
5 i:m the particular representation that we are considering. For a scalar ¢,

-

k ,{;h@ index 7 takes only one value, so it is a one-dimensional representation,
~and (J*)', is a 1 x 1 matrix, i.e. a number, for each given pair (u,v).
But in fact, by definition, on a scalar a Lorentz transformation is the
identity transformation, so d¢ = 0 and J** = 0. A representation in
which all generators are equal to zero is trivially a solution of eq. (2.9),
for any Lie group, and so it is called the trivial representation.
The four-vector representation is more interesting. In this case ¢,j
are themselves Lorentz indices, so each generator J*” is represented by
a4 x 4 matrix (J**)? . The explicit form of this matrix is

(J# Ve =t (n* 65 —n"* 7). (2.23)
This can be shown observing that, from egs. (2.22) and (2.15), the vari-

ation of a four-vector V# under an infinitesimal Lorentz transformation
is dV# = w* V¥, which can be rewritten as

§VP = —%ww(ﬂ‘”)"a Ve, (2.24)

with (J#)?, given by eq. (2.23) (this solution for J*¥ is unique be-
cause we require the antisymmetry under yu < v). This representation
is irreducible since a generic Lorentz transformation mixes all four com-
ponents of a four-vector and therefore there is no change of basis that
allows us to write (J#*)?, in block diagonal form. We can now use the
explicit expression (2.23) to compute the commutators, and we find

[JB¥, JP%) = i (P M — P JV7 — o JEP 4 i V) . (2.25)

This is the Lie algebra of SO(3,1). It is convenient to rearrange the six
components of J#¥ into two spatial vectors,
s 1 s ; ;
Ji= §e”kﬂk, Ki=Jg®, (2.26)

In terms of J*, K* the Lie algebra of the Lorentz group (2.25) becomes

[, ] =i 1", (2.27)
[J*, K] = ie " K", (2.28)
[, KA] = —ie¥ogF, (2.29)

Equation (2.27) is the Lie algebra of SU(2) and this shows that J*
defined in eq. (2.26), is the angular momentum. Instead eq. (2.28) ex-
presses the fact that K is a spatial vector.

2.3 The Lorentz algebra 19




3This is the “active” point of view. Al-
ternatively, we can say that we keep P
fixed and we rotate the reference frame
clockwise; this is the “passive” point of
view.
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We also introduce the definitions ' = (1/2)e7*wi* and 7 = W™

Then

%W#VJ#U = w1 + wizJ®® + wea JB + iwwt}m
T i B = (2.30)
where we used wiy = —w® = —n* while w1y = w'? = @3, etc. Then a
Lorentz transformation can be written as
A =exp{—if-J+in -K}. (2.31)

With our definitions ¢ = +(1/2)e¥*w* and n* = +w*™ a rotation by
an angle @ > 0 in the (z,y) plane rotates counterclockwise the position
of a point P with respect to a fixed reference frame,?® while performing
a boost of velocity v on a particle at rest we get a particle with velocity
+v. To check these signs, we can consider infinitesimal transformations,
and use the explicit form (2.23) of the generators. Performing a rotation
by an angle 6 around the z axis, egs. (2.31) and (2.23) give

Sah = —if(J2)* 2 = 6 ('#62 — oL )z (2.32)

and therefore 6z = —fy and dy = +6z, corresponding to a counterclock-
wise rotation. Similarly, performing a boost along the z axis,

5zt = +in(JO)W z¥ = —n (6 — 178, )z” (2.33)

and therefore 8t = +nz and éx = +nt, which is the infinitesimal form
of eq. (2.18).

2.4 Tensor representations

By definition a tensor T#¥ with two contravariant (i.e. upper) indices is
an object that transforms as

TH — AR LAY, TV (2.34)

In general, a tensor with an arbitrary number of upper and lower indices
transforms with a factor A* . for each upper index and a factor A pf" for -
each lower index.

Tensors are examples of representations of the Lorentz group. For
instance, a generic tensor T#” with two indices has 16 components and
eq. (2.34) shows that these 16 components transform among themselves.
i.e. they are a basis for a representation of dimension 16. However, this |
representation is reducible. From eq. (2.34) we see that, if T# is an- !
tisymmetric, after a Lorentz transformation it remains antisymmetric, |
while if it is symmetric it remains symmetric. So the symmetric and
antisymmetric parts of a tensor T** do not mix, and the 16-dimensional




representation is reducible into a six-dimensional antisymmetric repre-
sentation 4#” = (1/2)(T*" —T**) and a 10-dimensional symmetric rep-
resentation S# = (1/2)(T* 4+ T¥*). Furthermore, also the trace of a
symmetric tensor is invariant,

8 =0 8" — N A AY,87 = §, (2.35)

where in the last step we used the defining property of the Lorentz group,
eq (2.13). This means, in particular, that a traceless tensor remains
traceless after a Lorentz transformation, and thus the 10-dimensional
symmetric representation decomposes further into a nine-dimensional
irreducible symmetric traceless representation, S — (1/4)n#*S, and
the one-dimensional scalar representation S.

The following notation is commonly used: an irreducible represen-
tation is denoted by its dimensionality, written in boldface. Thus the
scalar representation is denoted as 1, the four-vector representation as 4,
the antisymmetric tensor as 6 and the traceless symmetric tensor as 9.4
The tensor representation (2.34) is a tensor product of two four-vector
representations, which means that each of the two indices of T+ trans-
forms separately as a four-vector index, i.e. with the matrix A. The
tensor product of two representations is denoted by the symbol ®. We
have found above that the tensor product of two four-vector representa-
tions decomposes into the direct sum of the 1,6, and 9 representations.
Denoting the direct sum by @, we have®

44=10639.

The decomposition into irreducible representations of tensors with more
than two indices can be obtained similarly. The most general irreducible
tensor representations of the Lorentz group are found starting from a
generic tensor with an arbitrary number of indices, removing first all
traces, and then symmetrizing or antisymmetrizing over all pairs of in-
dices. Note that, using *¥, we can always restrict to contravariant
tensors; for instance V# and V, are equivalent representations.

All tensor representations are in a sense derived from the four-vector
representation, since the transformation law of a tensor is obtained ap-
plying separately on each Lorentz index the matrix A#, that defines the
transformation of four-vectors. This means that (as the name suggests)
tensor representations are tensor products of the four-vector representa-
tion. For this reason, the four-vector representation plays a distinguished
role and is called the fundamental representation of SO(3,1).5

Another representation of special importance is the adjoint representa-
tion. It is a representation which has the same dimension as the number
of generators. This means that we can use the same type of indices a, b, ¢
for labeling the generator and its matrix elements, and for any Lie group
it can be written in full generality in terms of the structure constants,

as

(2.36)

i) = —if%,. (2.37)

The Lie algebra (2.9) is automatically satisfied by (2.37). This follows
from the fact that, for all matrices A, B, C, there is an algebraic identity
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41f two inequivalent representations
happen to have the same dimensional-
ity one can use a prime or an index to
distinguish between them.

5In Exercise 2.5 we discuss the sep-
aration of the representation 6, ie.
the antisymmetric tensor, into its gelf-
dual and anti-self-dual parts, both in
Minkowski space and in a FEuclidean
space with metric §#¥. We will see
that in the Euclidean case the anti-
symmetric tensor A*¥ is reducible and
decomposes into two three-dimensional
representations corresponding to self-
dual and anti-self-dual tensors, while in
Minkowski space an antisymmetric ten-
sor A*¥ with real components is irre-
ducible.

870 avoid all misunderstanding, we an-
ticipate that in Section 2.5 we will
enlarge the definition of the Lorentz
group to include spinorial representa-
tions. With this enlarged definition,
four-vectors are no longer the funda-
mental representation of the Lorentz
group. Instead, all representations of
the Lorentz group will be built from the
spinorial representations (1/2,0) and
(0,1/2) that will be defined in Sec-
tion 2.5.
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known as the Jacobi identity,
[A,[B,C]] + [B,[C, Al + [C,[A, B]) = 0, (2.38)

which is easily verified writing the commutators explicitly. Setting in
this identity A = 7%, B = T® and C = T° we find that the structure
constants of any Lie group obey the identity

fabdfcde + fbcdfade ' fcadfbde = (239)

If we substitute eq. (2.37) into eq. (2.9), we see that the Lie algebra is
automatically satisfied because of eq. (2.39).

For the Lorentz group, the adjoint representation has dimension six, so
it is given by the antisymmetric tensor A#Y. The adjoint representation
plays an especially important role in non-abelian gauge theories, as we
will see in Chapter 10.

All the representation theory on tensors that we have developed having
in mind S0O(3,1) goes through for SO(n) or SO(n, m) generic, simply
replacing n,, with §,, for SO(n), or with a diagonal matrix with n
minus signs and m plus sign for SO(n,m).

2.4.1 Decomposition of Lorentz tensors under
SO(3)

Since we know how a tensor behaves under a generic Lorentz transfor-
mation, we know in particular its transformation properties under the
SO(3) rotation subgroup, and we can therefore ask what is the angu-
lar momentum j of the various tensor representations. Recall that the
representations of SO(3) are labeled by an index j which takes integer
values 7 = 0,1,2,..., and the dimension of the representation labeled
by 7 is 25 + 1. Within each representation, these 25 + 1 states are la-
beled by j, = —7j,...,7. For SO(3), it is more common to denote the
representation as j, i.e. to label it with the angular momentum rather
than with the dimension of the representation, 27 + 1. In this notation,
0 is the scalar (also called the singlet), 1 is a triplet with components
Jj: = —1,0,1, while 2 is a representation of dimension 5, etc. (if we
rather use the same convention as in the case of the Lorentz group, 1.e.
we label them by their dimensionality, we should write 1, 3,5,...). '
A Lorentz scalar is of course also scalar under rotations, so it has
j = 0. A four-vector V# = (V9 V) is an irreducible representation
of the Lorentz group, since a generic Lorentz transformation mixes all
four components, but from the point of view of the SO(3) subgroup it is
reducible: spatial rotations do not mix V° with V; V0 is invariant under
spatial rotations, so it has j = 0, while the three spatial components V* |
form an irreducible three-dimensional representation of SO(3), so they
have j = 1. In group theory language we say that, from the point of
view of spatial rotations, a four-vector decomposes into the direct sum
of a scalar and a j7 = 1 representation, :

Vikeoel (2.40)
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or, if we prefer to label the representations by their dimension, rather
than by 7, we write 4 = 1@ 3. The former notation indicates more
clearly what are the spins involved while the latter makes apparent that
the number of degrees of freedom on the left-hand side matches those
on the right-hand side.

We now want to understand what angular momenta appear in a
generic fensor TH with two indices. By definition a tensor T#" trans-
forms as the tensor product of two four-vector representations. Since,
from the point of view of SO(3), a four-vector is 0 @ 1, a generic tensor
with two indices has the following decomposition in angular momenta

T™"e(0el)@(0e1)=020)6(021)8(100)8(1®1)
=001016(09162). (2.41)

In the last step we used the usual rule of composition of angular mo-
menta, which says that composing two angular momenta j; and j; we
get all angular momenta between |j1 — jo| and j1 + j2, 50 0® 0 = 0,
0l=1and 1®1=0d1d2. Thus, in the decomposition of a generic
tensor TA¥ in representations of the rotation group, the j = 0 represen-
tation appears twice, the j = 1 representation appears three times, and
the 7 = 2 once.

It is interesting to see how these representations are shared between
the svmmetric traceless, the trace and the antisymmetric part of the
tensor T*¥, since these are the irreducible Lorentz representations. The
trace is a Lorentz scalar, so it is in particular scalar under rotations and
therefore is a O representation. An antisymmetric tensor A*” has six
components, which can be written as A% and (1/2)e/* A7%%. These are
two spatial vectors and therefore

A & 1wyl (2.42)

For example, an important antisymmetric tensor in electromagnetism
is the field strength tensor F),,, and in this case the two vectors are
E' = —F% and B* = —(1/2)e¥*Fi*, ie. the electric and magnetic
fields. Another example of an antisymmetric tensor is given by the
Lorentz generators J#¥ themselves; in this case the two spatial vectors
are the angular momentum and the boost generators that have been
introduced in eq. (2.26).

Since we have identified the trace S with a 0 and A* with 1® 1,
comparison with eq. (2.41) shows that the nine components of a sym-
metric traceless tensor S#¥ decompose, from the point of view of spatial
rotations, as

S e0dl1a2. (2.43)

Observe that, when in eq. (2.41) we write T+ as (0@ 1) ® (0 ® 1), the
first 0 corresponds to taking the index p = 0, the first 1 corresponds to
taking the index u = ¢, and similarly for the second factor (0 & 1) and
the index v. Therefore the term (0®0) in eq. (2.41) corresponds to 7%,
(0®1)is T%, (1®0) is TP and (1 ® 1) is T%. It is clear that T% is
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a scalar under spatial rotations, while 7% and 7T are spatial vectors.
As for T% the antisymmetric part AY = T% — T9% ig a vector, as can
be seen considering €% A7%; this gives the third 1 representation. The
symmetric part S¥ = T% + T7* can be separated into its trace, which
gives the second O representation, and the traceless symmetric part,
which therefore must have j = 2. For example, gravitational waves can
be described by a traceless symmetric spatial tensor (transverse to the
propagation direction) and therefore have spin 2, see Exercise 2.6.

In general, a symmetric tensor with NV indices contains angular mo-
menta up to j = N. In four dimensions, higher antisymmetric tensors
are instead less interesting, because the index p takes only four values

) 0,...,3 and therefore we cannot antisymmetrize over more than four
’ indices, otherwise we get zero. Furthermore, a totally antisymmetric
’ tensor with four indices, A#Y#?, has only one independent component
A2 5o it must be a Lorentz scalar. An antisymmetric tensor with
three indices, A#Y?, has 4 - 3 - 2/3! = 4 components and it has the same
= transformation properties of a four-vector.
The last point can be better understood introducing the totally an-
1 tisymmetric tensor defined as follows. In a given reference frame e#*?7
is defined by €°123 = 41 and by the condition of total antisymmetry,
: so it vanishes if any two indices are equal and it changes sign for any
' exchange of indices, e.g. €92 = —1, etc. Normally, if one gives the nu-
merical value of the components of a tensor in a given frame, in another
! frame they will be different. The € tensor is however special, because
under (proper) Lorentz transformations '

eHvre A.##rA«uwAppJ Aagr Ey_’y’p’a" = (det A)E;J.Vpo' = E,LWPO’ « (244)

So, the components of the ¢ tensor have the same numerical value in all
Lorentz frames. In terms of this tensor, it is immediate to understand
that the four independent components of A**# can be rearranged in a
four-vector A, = €uupe AP, and that A%? = (1/4!)e,p 0 A7 is &
scalar.

A tensor which is invariant under all group transformations (i.e. for
the Lorentz group, a tensor which has the same form in all Lorentz
frames) is called an invariant tensor. The only other invariant tensor of
the Lorentz group is 7, ; its invariance follows from the defining property
of the Lorentz group, eq. (2.13).

2.5 Spinorial representations

2.5.1 Spinors in non-relativistic quantum
mechanics

Tensor representations do not exhaust all physically interesting finite-
dimensional representations of the Lorentz group. We can understand
the issue considering spatial rotations, i.e. the SO(3) subgroup of the
Lorentz group. The tensor representations of SO(3) are constructed ex-
actly as before, with scalars ¢, spatial vectors v?, tensors T, etc. with
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2 = 1,2,3. However we know from non-relativistic quantum mechanics
~ that, beside the tensor representations, there are other representations of
ggea,t physical interest. These are the spinorial representations. Strictly
- speaking, these are not SO(3) representations, because under a rota-
~ tion of 27 a spinor changes sign, while an SO(3) rotation by 27 is the
same as the identity transformation. However, since the observables are
quadratic in the wave function, this sign ambiguity is perfectly accept-
able physically, and these representations must be included. In more
formal terms, this means that, for spatial rotations, the physically rele-
vant group is not SO(3) but rather SU(2).
We recall some facts about SU(2) representations, well known from
non-relativistic quantum mechanics. The Lie algebras of SU(2) and of
SO(3) are the same, and are given by the angular momentum algebra

[JE, 7] = ie¥h g% (2.45)

=D

w

From the discussion in Section 2.1, we see that the Lie algebra knows

only about the properties of a group near the identity element, and

the fact that SU(2) and SO(3) have the same Lie algebra means that

they are indistinguishable at the level of infinitesimal transformations.

However, SU(2) and SO(3) differ at the global level, i.e. far from the

identity. In SO(3) a rotation by 27 is the same as the identity. Instead,

it can be shown that SU(2) is periodic only under rotations by 4. This

means that an object that picks a minus sign under a rotation by 27

is an acceptable representation of SU(2), while it is not an acceptable '
representation of SO(3). Therefore when we consider SU(2) we include '
the solutions of eq. (2.45) that correspond to half-integer spin, while ;
for SO(3) we only retain representations with integer spin. Thus, the :
representations of SU(2) are labeled by an index j which takes values

0,4,1,2,... and gives the spin of the state, in units of fi. The spin-j

representation has dimension 2j + 1, and the various states within it

are labeled by 7., which takes the values —j, ..., 7 in integer steps. The "
representation j = 1/2 is called the spinorial representation, and has

dimension 2: on it the J* are represented as

A e A

I
I

Fal (2.46)

where ¢t are the Pauli matrices,

512(23) 02:(2 —Oz) 03=(é-?1)‘ (247)

They satisfy the algebraic identity
olo? = 59 + iekg® (2.48)

from which it follows immediately that ¢*/2 obey the commutation re-
lations (2.45).

The spinorial is the fundamental representation of SU(2) since all
representations can be constructed with tensor products of spinors. In
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TThe fact that the Lorentz algebra can
be written as the algebra of SU(2) x
SU(2) does not mean that the Lorentz
group SO(3,1) is the same as SU(2) x
SU(2). First of all, the Lie algebra only
reflects the properties of the group close
to the identity. Furthermore, J* are
complex combinations of J and K. Ob-
serve that, because of the factor ¢ in
eq. (2.52), a representation of SU(2) x
SU(2) with J* hermitian induces a rep-
resentation of SO(3,1) with J hermi-
tian but K antihermitian. For the more
mathematical reader: SU(2) x SU(2) is
the universal covering group of SO(4)
(similarly to the fact that SU(2) is the
universal covering group of SO(3)) and
S0(4) is the Euclidean version of the
Lorentz group, i.e. it is obtained tak-
ing the time variable ¢ purely imagi-
nary. The universal covering group of
50(3,1) is SL(2,C).

physical terms, this means that with spin 1/2 particles we can construct
composite systems with all possible integer or half-integer spin. For
instance, the composition of two spin 1/2 states gives spin zero and spin
1,

1 1

“2-®2—~OEB1. (2.49) |
If we denote by T and | the j = 1/2 states with j, = +1/2 and j, =
—1/2, respectively, then the three states with j = 1 are given by

1
while the singlet (i.e. the scalar state) is
1
7§(Ti =~ LT (2.51)

2.5.2 Spinors in the relativistic theory

We certainly want to keep spinors in the relativistic theory. This means
that we must enlarge the set of representations of the Lorentz group,
compared to the tensor representations discussed above. This is most
easily done starting from the Lorentz algebra in the form given by
eqs. (2.27)—(2.29), and defining

J+iK
£
JE= 7

(2.52)

The Lie algebra becomes
P AP L
[J7%, g9 = ieidk =k
[J+%, 4] =0.

(2.53)
(2.54)
(2.55)

Therefore we have two copies of the angular momentum algebra, which
commute between themselves.”

Having written the Lorentz group in this form, it is now easy to include
spinorial representations: we simply take all solutions of the algebra
(2.53)—(2.55), including spinor representations.

Since we know the representations of SU(2), and here we have two
commuting SU(2) factors, we find that:

o The representations of the Lorentz algebra can be labeled by two
half-integers: (j_,j+)-
e The dimension of the representation (4,54 ) is (2j- +1)(2j4 +1)-
e The generator of rotations J is related to J* and J~ by J =
J* + J—; therefore, by the usual addition of angular momenta in:
quantum mechanics, in the representation (j_,7,) we have states
with all possible spin j in integer steps between the values |j;. —j-!
and j4 +j-.
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 The representations are in general complex and the dimension of the

representation is the number of independent complex components. In
some cases we can impose a reality condition and (2j- +1)(2j+ +1) be-
comes the number of independent real components. The representations
(j—.7+) must include all tensor representations discussed in the previous
section, plus spinorial representations. We examine the simplest cases.

(0.0). This representation has dimension one. On it, J* =050 also
J.K are zero. Therefore it is the scalar representation.

(3,0) and (0, %) These representations have both dimension two and
spin 1/2, so they are spinorial representations. We denote by (¥r)a,
with @ = 1,2, a spinor in (1/2,0) and by (¥r)a & spinor in (0,1/2)
(sometimes in the literature the index of ¢, is instead denoted by a to
stress that it is an index in a different representation compared to the
index of ¥g). ¥ is called a lefi-handed Weyl spinor and ¢ is called a
reght-handed Weyl spinor:

Weyl spinors: ¢ € (%,O) , wYRr€ (U,%) . (2.56)

We want to determine the explicit form of the generators J, K on Weyl
spinors. Consider first the representation (1/2,0). By definition, on this
representation J~ is represented by a 2 x 2 matrix, while J* = 0. The
solution of (2.54) in terms of 2 x 2 matrices is of course J~ = /2, and
therefore

(2.57)
K=—i(J*-J")=i —;- . (2.58)

Observe that in this representation the generators K* are not hermitian,
in agreement with the comment in note 7. This is a consequence of
the fact that the Lorentz group is non-compact and of the theorem
mentioned on page 16, which states that non-compact groups have no
unitary representations of finite dimension, except for representations in
which the non-compact generators (in this case the K*) are represented
trivially, i.e. K* = 0. We can now write explicitly how a Weyl spinor
transforms under Lorentz transformations, using eq. (2.31),

Yr — Apypr =exp {(_3‘0 =) %} YL (2.59)

Repeating the argument for the (0,1/2) representation, we find again
J=0/2but K= —ioc/2 and

¥r ~ Apn =exp {(~i0+m)- = | ¥a. (2.60)
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Note that Ar, r are complex matrices, and therefore necessarily the two
components of a Weyl spinor are complex numbers.

Using the property of the Pauli matrices o2gic? = —o™ and the
explicit form of Ay, g it is easy to show that
o?Aio? = Ag. (2.61)

From this it follows that
o2t — o2 (Aryr)* = (0?AL0%)0* Yt = Ar(0®Y1) (2.62)

where we used the fact that o202 = 1. Therefore , if ¢, € (1/2,0), then
ot is a right-handed Weyl spinor,

. |
o] € (0, 5) : (2.63)

We define the operation of charge conjugation on Weyl spinors as an
operation that transforms 11 into a new spinor 9§ defined as

¥ = io%y} . (2.64)

Then charge conjugation transforms a left-handed Weyl spinor into a *
right-handed one. Taking the complex conjugate of eq. (2.64) and de-
noting the right-handed spinor 4§ by 9r, we have ¢, = —io2y}, (having
used the fact that o2 is purely imaginary and o®¢® = 1). Therefore we |
define charge conjugation on a right-handed spinor ¥ as |

Yg = —io YR, (2.65) 1

so that charge conjugation transforms a right-handed Weyl spinor into |
a left-handed one. The factor i in eq. (2.64) is chosen so that, iterating |
the transformation twice, we get the identity operation,

(W8)° = (i0*})° = —~io” (ie$1)" = dr. (2.66)

We will understand the physical meaning of charge conjugation in Chap-
ter 4.

(,4). This representation has (complex) dimension four and [1/2 -
1/2] € j < 1/2+1/2, ie. j = 0,1. Comparing with eq. (2.40) we
see that it is a complex four-vector representation. A generic element
of the (1/2,1/2) representation can be written as a pair (WL)a, (ER)E)
where ¥y, and £g are two independent Weyl spinors, left-handed and
right-handed, respectively, and o, § take the values 1,2. We want tc}a
make explicit the relation between these four (complex) quantities and
the four components of a (complex) four-vector.

First of all, we have seen above that, given a right-handed spinor §r:
we can form a left-handed spinor £, = —i0%Es, and similarly from P
we can build 1g = io%};. We define the matrices o* and o as

ot =(1,0%), & =(1,-0%, (2,67




where o are the Pauli matrices and 1 is the 2 x 2 identity matrix. Then,
it is easy to show (see Exercise 2.3) that

ot br (2.68)

and
35 (2.69)

are contravariant four-vectors. These four vectors are by construction
complex. Since the matrix A¥, that represents the Lorentz transfor-
mation of a four~-vector is real, given a complex four-vector V# it is
consistent with Lorentz invariance to impose on it a reality condition,
V,, = V! because, if we impose it in a given frame, it will remain true in
all Lorentz frames. Therefore we obtain the real four-vector representa-

tlon.

(1,0) and (0,1). These correspond to self-dual and anti-self-dual
antisymmetric tensors A*, and each have complex dimension three, i.e.
real dimension six. We discuss them in Exercise 2.5.

2.6 Field representations

Our main motivation for studying Lorentz symmetry is to construct a
Lorentz-invariant field theory. A field ¢(z) is a function of the coordi-
nates with some definite transformation properties under the Lorentz

group. In general, if
zh — 2’ = A* z¥ (2.70)

the field ¢(z) will transform into a new function of the new coordinates,
#(z) — ¢'(z'). (2.71)
To define how a field transforms means to state how ¢'(z’) is related to

iz).

2.6.1 Scalar fields

The simplest possible transformation is that of a scalar field,

¢'(2) = ¢(z). (2.72)

In other words, the numerical value of a scalar field at a point is Lorentz

invariant: a point P has coordinates z in a reference frame and z’ in the

transformed frame, and the functional form of the field changes so that

its numerical value in P is the same, independently of how P is labeled.
Consider now an infinitesimal Lorentz transformation

x? — 2’ = z° + 6z (2.73)
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with ;
dxP = wP,z’ = —Eww(.]"”)ﬂa z%, (2.74)
and (J#¥)P, = i(n#P & —n"P 1), as in egs. (2.23) and (2.24). Under this
transformation 8¢ = ¢'(z') — ¢(z) = 0 by definition. This corresponds
to the fact that the scalar representation gives a trivial representation of
the generators, J* = 0. However, in the case of fields we have a more
interesting possibility, namely we can consider an infinitesimal variation

at fized coordinate x (rather than at a given point P),
So¢p = ¢'(z) — ¢(z) - (2.75)

To understand the difference between d¢ and 8¢ we observe that, when

we compute d¢ = ¢'(z') — ¢(x), we are studying how a single degree of

freedom (the field evaluated at the point P) changes when we change the

label of the point P from x to z'. However the point P is kept fixed, so

the base space is made by the single degree of freedom ¢(P) and there-

* fore is one-dimensional. More generally, when in the next subsections
we consider spinor or vector fields, we will see that 8y or 64, always

provides a finite-dimensional representation of the generators. For in-

stance the four degrees of freedom A,(F) provide a four-dimensional
; base space. Instead, when we compute o, we are comparing the fields -
{ at two different space-time points P and P’, so we are comparing dif-
p ferent degrees of freedom. The base space now becomes the set of ¢(P)
with P varying over all of space-time, or in other words is a space of
functions, and therefore it is an infinite-dimensional base-space. We then

obtain an infinite-dimensional representation of the generators.

To find the generators in this representation, we expand eq. (2.75) to

first order in dz,
8o = ¢' (2’ — 6z) — p(z) = —02°0,¢(2) . (2.76).

Using eq. (2.74) for dz, this can be rewritten as

o = %wuv () gz Bpt = —%wwwaf’: (2.77)

where we defined
I = —(J*)Y 2°0, = i(z*d” — x”0"). (2:78

We can easily check that the operators L* satisfy the Lie algebra (2.23
and therefore give a representation of the generators of the Lorenf:
group. As discussed above, the basis for the representation is the spac
of scalar fields. This is a space of functions, so it is infinite-dimensional
and therefore this is an infinite-dimensional representation of the Lorenid®
algebra. We have not yet specified what is the scalar product in the fiel 4
space, S0 we cannot yet ask whether this representation is unitary. Wl
postpone the issue to the next chapter. ;

Recalling that with our metric signature p* = +id* (see the Not
tion), we find L* = ztp* — z¥p*. In particular, for spatial rotatiof
we have LY = zipl — zip* and L' = (1/2)e'dk Li* = ¢*gip*, and}
recognize that L' is the orbital angular momentum.




e e

2.6.2 Weyl fields

A left-handed Weyl field vy () is defined as a field that, under z# —
7 = A¥ 2", transforms as

Yr(z) = Y (') = Apyr(a), (2.79)

with Az given by eq. (2.59). Similarly a right-handed Weyl field ¥z
transforms with Ag given in eq. (2.60). In the classical theory we will
consider ¥, %¥g as ordinary, commuting, ¢-numbers.

The representation of the Lorentz generators on 3, can be found

computing

otz = Y (¢) — Yr(x) = ¢ (¢’ - 6z) —Yr(x)
=1 (2') — 62P0ptbr () — Yr()
= (AL — I)¥r(z) — 62P0,r(z) . (2.80)
‘We see that dotr, is made of two parts; one comes from the variation

of the coordinate 6z” and is the same as for scalar fields. Exactly as in
egs. (2.76) and (2.77), we have

—62PO iy, = —%wwLﬂwL , (2.81)

with L*¥ given in eq. (2.78). We write Ay, in the form

Ap = g~ #9wS* (2.82)
Then eq. (2.80) becomes
60"//'[. = _%W,LWJ'MV"/)L (283)
with
JH = LA 4 gV (2.84)

Comparing eq. (2.82) with eq. (2.59) we see that

i 1 .. . ot :
i Z ik qik _ ;
S 3¢ S 5 (2.85)
while ;
o (2.86)

5
We recognize in eq. (2.84) the separation of the angular momentum into
the orbital and the spin contributions. It is clear that this separation is
completely general, and holds for any representation. The orbital part
L¥¥ always has the form (2.78) independently of the representation,
while §#¥ depends on the specific representation used. For instance,
for right-handed Weyl fields 5% are still given by eq. (2.85) while S =
—ig*/2, as we see from eq. (2.60).

2.6 Flield representations 31
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2.6.3 Dirac fields

Consider a parity transformation (t,x) — (¢, —x). Under this operation
the boost generators behave as true vectors and change sign, K — -K,
since the parity transformation reverses the velocity v of the boost. The
angular momentum generator is instead a pseudovector, J — J. There-
fore a parity operation exchanges the Ji generators, Jf‘,_ ey JF . Lhis
means that under a parity transformation an object in the (j—,j+) Tep-
resentation is transformed into an object in the (j4,7-) representation.
Therefore the representation (j—,j+) of the Lorentz group is not at the
same time a basis for a representation of the parity transformation, un-
less j— = j.. In particular, 91, and ¥r, separately, are not a basis for a

K representation of the parity transformation.

' In Nature, we know experimentally that parity is violated by weak
interactions. At the theoretical level, this is reflected in the fact that in
the Standard Model the left and right-handed components of the spin

- 1/2 particles enter the theory in a very different way, as we will see in
: , Chapter 8. However, we saw in Section 1.2 that the typical scale of weak
K interactions is O(100) GeV, much higher than the scale of strong and
of electromagnetic interactions. At sufficiently low energies, therefore,
the effect of weak interactions is small, and the dominant contributions
come from the electromagnetic and the strong interactions, which both
conserve parity. In this case, it is convenient to work with fields which
r provide a representation of Lorentz and parity transformations. We then

" 8\More precisely, this is the Dirac field define a Dirac field as®
written in the chiral basis, see Sec-

tion 3.4.2.
P
= ( 11); ) : A (2.87)

A Dirac field therefore has four complex components, and it provides a
basis for a representation of both Lorentz and parity transformations.
In fact, under a Lorentz transformation, ¥ — Ap¥ with

_ (AL O ¥
Ap = ( 0 Ag ) : (2.88

O1n Section 3.4.2, after introducing the and Az, Ag given in egs. (2.59) and (2.60).° Under a parity transforma:

Dirac matrices, we will see how to write  tion P the coordinates change as o* — z'* = (t, —x) while
Ap in terms of the commutator of Dirac

matrices, and the result will be inde- ;
pendent of the chiral basis that we have Yr (.“L‘) P YR (:B ) (2,89 ]
used here. Yr(z) Pr(z') ‘
and therefore o

¥(z) - ( Y )w(z'). - (2.90

When we study the quantized Dirac field we will examine the possibilit}
and the meaning of an overall phase n = +1 in the transformation la¥

(2.90), see Section 4.2.3.




:  In egs. (2.64) and (2.65) we defined the operation of charge conjuga-
“tion on Weyl spinors. Given a Dirac spinor ¥ as in eq. (2.87), charge
conjugation allows us to define a new Dirac spinor

—ia2y . 0 go° .
" ( w%;;a ) z_z( " )xp . (2.91)

and, as for Wevl spinors, iterating charge conjugation twice one finds
the identity transformation,

! (T°) =W. (2.92)

Note that the coordinates z* are unchanged under charge conjugation.
We will understand the importance of charge conjugation when we quan-
tize the theory and we will find particles and antiparticles.

Dirac spinors are the basic objects in quantum electrodynamics (QED).
Since QED preserves parity and charge conjugation, the Weyl spinors
always appear in the combination ¥. On ¥ parity is a well-defined op-
eration, and we can use it to construct a parity-invariant theory while,
having for instance only ., at our disposal, it is impossible to build a
theory invariant under parity. We will see that in the Standard Model,
parity and charge conjugation are not symmetries and 9L, %¥r appear
separately, in a non-symmetric way. Therefore, Weyl spinors are more
fundamental objects than Dirac spinors.

2.6.4 Majorana fields

" A Majorana spinor is a Dirac spinor in which ¢, and ¥r are not inde-
pendent, but rather ¥ = io29},

So, it has the same number of degrees of freedom as a Weyl spinor,
although it is written in the form of a Dirac spinor. From this definition
it follows that a Majorana spinor is invariant under charge conjugation

0o Wings (2.94)

Observe that, if we have a complex scalar field ¢(z), we can impose
on it a reality condition ¢(z) = ¢*(x), and this is a Lorentz-invariant
condition: since ¢ and ¢* are both Lorentz invariant, if we impose ¢ =¢"
in a frame, we will have ¢ = ¢* in any other frame. The same is true
for the four-vector representation, as we already discussed on page 29.
For a Dirac spinor ¥ the situation is different; ¥ is a complex field,
and the condition ¥ = U* is not Lorentz invariant, since the matrix
Ap in eq. (2.88) is not real. Therefore, if we impose the relation ¥ =
¥* in a frame, it will not hold in general in another Lorentz frame.
Instead, the condition (2.94) is by construction Lorentz invariant, since
it is a consequence of the definition (2.93), which in turns expresses the
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Lorentz-invariant statement that io29} is a right-handed spinor. Since

¢, involves complex conjugation, see eq. (2.91), the condition (2.94) is
a Lorentz-invariant relation between ¥ and ¥*, and in this sense it is
called a reality condition.

So we can see Majorana fields as “real” Dirac fields, with respect to
the only possible Lorentz-invariant reality condition, eq. (2.94).

It is possible that Majorana spinors play an important role in the
description of the neutrino. We will come to this issue later.

2.6.5 Vector fields

The definition of vector fields at this point is obvious. A (contravariant)
vector field V#(z) is defined as a field that, under z# — z'* = A*,z",

transforms as
VH(z) —» V*(z') = A¥, V¥ (2). (2.95)

From the discussion in Section 2.4.1 we see that a general vector field
has a spin-0 and a spin-1 component. An example of a vector field that
will be important for us is the gauge field A#(z) in electromagnetism.
We will see in Section 4.3.1 that A#(z) is subject to some conditions,
stemming from gauge invariance, that eliminate the spin-0 component
and the state with (j = 1,7, = 0), where z is the propagation direction.
Since a vector field belongs to the (1/2,1/2) representation, it has
j— = j+ and therefore it is a basis for the representation of parity. A
true vector transform as (V°,V) — (V% —V) while a pseudovector (or
axial vector) transforms as (V0, V) — (=V?,V). '
Tensor fields are defined similarly.

2.7 The Poincaré group

Beside invariance under Lorentz transformations, we require also invari--
ance under space-time translations. A generic element of the translation:

group is written as i
exp{—iP*a,} (2.96)

where a, are the parameters of the translation, ¥ — z#* + a#, and
the components of the four-momentum operator P are the genera-
tors. Translations plus Lorentz transformations form a group, called the
Poincaré group, or the inhomogeneous Lorentz group (it is sometimes
denoted as I50(3,1), where “I” stands for inhomogeneous). :

Since the translations commute, we have 1
3

[PH,P*] =0. (2.97)

To find the commutator between P* and J#° we can start from the
commutators

[J%, P7] = i€ P*, (2,981
[/}, P°] =0, (2.99
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N 1 express the facts that P* is a vector under rotations and that
o energy is a scalar under rotations. The unique Lorentz-covariant
_eralization of egs. (2.98) and (2.99) is

(PH, JP%] = i (n#* P? — 17 PP) . (2.100)

"‘f‘

ﬁ;.-i gether with the Lorentz algebra (2.25), egs. (2.97) and (2.100) define
'-.%éﬁ?oincaxé algebra. In terms of J%, K, P = H and P it reads
o T

O, ) =it gk, [7 K] =id KR, [P = ik Pr | (2.101)
K [KI.KJ] - _ieijk:Jk:’ [Pi,Pj] =0, [KZ,PJ} - ?:-Héij ’ (2102)

[, H] =0, [P,H]=0, [K'H]=iP". (2.103)
=Equations (2.101) express the fact that the J i generate spatial rotations
and K*, P* are vectors under rotations. Equations (2.103) state that J*
and P* commute with the generator of time translations and therefore

are conserved quantities; the K i instead are not conserved, and this is
the reason why the eigenvalues of K are not used for labeling physical

states.

2.7.1 Representation on fields

We saw in Section 2.6 that fields provide an infinite-dimensional repre-
sentation of the Lorentz group, and that on fields the generators JHY are
represented as

JH = LW 4 SP¥ (2.104) ‘
where
LH = i(z#d* — z¥O") (2.105)
and $# depends on the spin of the field in question, but not on the .

coordinates z#. To obtain a representation of the full Poincaré group
on fields, we must now find how to represent the four-momentum oper-
ator P*, i.e. we have to specify the transformation law of fields under
translations.

We require that all fields, independently of their transformation prop-
erty under the Lorentz group, behave as scalars under space-time trans-
lation. Let us label by ¢ a generic field, either a Lorentz scalar field,
or a component of a spinor field £, with a given, or a given component
V*# of a vector field, etc. Then, under a translation z — 2z’ = z + a, all
fields, independently of their Lorentz properties, transform as

¢ (z') = ¢(z). (2.106)

Under an infinitesimal translation z# — x'#* = z* + ¢# we have, to first
order in e,

5o = &' () — Bz) = ¢'(z — &) — $(z) = —*Bud(z) . (2107)
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10 pctually there is also the possibil-
ity of an anti-unitary operator; the
only symmetry transformation where
this happens is time-reversal, and we
postpone the definition of anti-unitary
operators to Chapter 4.
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On the other hand, from the form (2.96) of the translation operator, it
follows that

§ (@ — ) = e F g (a) = e g(x) (2.108)
and therefore to first order in €
So¢p = e, Pro(z). (2.109)

Comparing egs. (2.107) and (2.109) we see that the momentum operator

is represented as
P# = +i0*. (2.110)

Therefore

H= z‘éfz—o = % , Pi=ift = —id; = —ia—i; ) (2.111)
The explicit form of J* and of P* has been found requiring that the
fields have well-defined transformation properties under the Poincaré
group; therefore these explicit expressions must automatically satisfy
the Poincaré algebra. We can check this easily observing that S* does
not depend on the coordinates and therefore commutes with 8%, while
[8#,z7] = n**. Therefore

(P*, J9] = [i0¥, (2007 — 2°0)] = —**07 + "0
=i (**P° —n*°P") (2.112)

in agreement with eq. (2.100). The commutator [P#, P¥] = 0 is also sat-
isfied by P#* = 10" and we already know that the commutator [J*, J¥7]
is correctly reproduced, so the full Poincaré algebra is obeyed.

2.7.2 Representation on one-particle states

The representation of the Poincaré group on fields allows us to construct
Poincaré invariant Lagrangians, as we will study in the next chapter. At
the classical level, a Lagrangian description is all that we need in order
to specify the dynamics of the system. At the quantum level, how-
ever, one of our aims will be to understand how the concept of particle
emerges from field quantization. It is therefore useful to see how the
Poincaré group can be represented using as a basis the Hilbert space
of a free particle. We will denote the states of a free particle with mo-
mentum p as |p,8), where s labels collectively all other quantum num:
bers. Since p is a continuous and unbounded variable, this base space
is infinite-dimensional. A theorem by Wigner (see Weinberg (1995)
Chapter 2) states that on this Hilbert space any symmetry transforma
tion can be represented by a unitary operator.1? Therefore in this bas¢
space a Poincaré transformation is represented by a unitary matrix, an
the generators J%, K*, P* and H by hermitian operators.

The representations are labeled by the Casimir operators. One 15
easily found, and is P, P*. On a one-particle state it has the value m"




¢ m is the mass of the particle. Using the commutation relations of
>oincaré group one can verify that there is a second Casimir operator
n by W WH, where

o 1

LAl WH = —Ets"“’f"’.],,,,Por (2.113)
(s

%@iﬂlefi the Pauli-Lubanski four-vector. To prove that W,W* is a
(Casimir operator is straightforward. First of all, W# is clearly a four-
vector. so W, W* is Lorentz-invariant and therefore commutes with J#V.
rom the explicit form it also follows that

o W+, P =0, (2.114)

(using eq. (2.100) and the antisymmetry of e*"* ), and then W, W*
commutes also with P¥.

Since W,W# is Lorentz-invariant, we can compute it in the frame
that we prefer. If m # 0, it is convenient to choose the rest frame of
the particle; in this frame W# = (—m/2)e*?°J,, = (m/ 2)edume 1., 80
WO = 0 while

Wi = Tk = 2RI = (2.115)
Therefore on a one-particle state with mass m and spin j we have
—W,WH* =m?i(j +1), (m#0). (2.116)

If instead m = 0 the rest frame does not exist, but we can choose a frame
where P* = (w,0,0,w); in this frame a straightforward computation
gives W0 = W3 = wJ®, W! = w(J' — K?) and W? = w(J? + K1)
Therefore

W W = P((K2 - TN+ (K42, (m=0). (2.117)

Comparing eqs. (2.116) and (2.117) we see that the limit m — 0 is
quite subtle, and we must study separately the massive and massless
representations.

Massive representations: In this case on the one-particle states
we have P#P, = m? while W,W* = —m?j(j + 1). We will restrict to
m real* and positive. Therefore the representations are labeled by the
mass m and by the spin j. We can understand this better observing
that, if m # 0, with a Lorentz transformation we can bring P# into
the form P* = (m,0,0,0). This choice of P* still leaves us with the
freedom of performing spatial rotations. In other words, the space of
one-particle states with momentum P* = (m,0,0, 0) is still a basis for
the representation of spatial rotations. The group of transformations
which leaves invariant a given choice of P# is called the little group.
In this case, since we want to include spinor representations, the little
group is SU(2). The massive representations arc therefore labeled by
the mass m and by the spin j = 0,1/2,1,..., and states within each
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1y principle there is also the possi-
bility of representations with m? < 0,
known as tachyons. In field theory the
emergence of a tachyonic mode is the
signal of an instability, and reflects the
fact that we have expanded around the
wrong vacuum, e.g. around a maxi-
mum rather than a minimum of a po-
tential.
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This part is more technical and can be
omitted at a first reading. Just assume
that the little group is SO(2) and skip
the part written in smaller characters.

.

12 hey would be hermitian if we write
them as A*¥, B*Y and C*¥. However,
&P is proportional to wy, (J*Y)P a7,
so the representation is provided by the
matrices with one upper and one lower
index, and it is for these matrices that
the algebra (2.124) holds.

representation are labeled by j, = —j,—j + 1,...,j. This means that
massive particles of spin j have 2j + 1 degrees of freedom.

Massless representations: When P? = 0 the rest frame does not
exist, but we can reduce P* to the form P* = (w,0,0,w). The little
group is the set of Poincaré transformations that leaves this vector un- |
changed. One sees immediately that the rotations in the (z,y) plane
leave this P# invariant; this is an SO(2) group, generated by J°.

Furthermore there are two less evident Lorentz transformations that do
not change P*; to find the most general solution, it is sufficient to restrict to
infinitesimal Lorentz transformations A*, = §%+w*,, and to look for the most
general matrix w"” which satisfies w** = —w"” (in order to have a Lorentz
transformation) and

w" B, =0, (2.118)
for P, = (w,0,0, —w). Therefore
0 WO W02 08 1
o1 12 13
— 0 w w 0
_502 2 0 w3 0 =0, {2-119)
_wﬂ3 _w13 '“UJZS 0 =

which gives W =0, w" +w!® =0 and W 4w = 0. Denoting W = q,
w® = B and w'? = § we see that the most general Lorentz transformation
that leaves P* invariant can be written as

A = gTHaA+BBLEC) (2.120)
where (lowering the second Lorentz index)
0 -1 0 0 0 0 -1 0
| -1 0 0 1 . 0 0 0 O ;
I [ —
Au=tt ¢ g po | B*=H 10 0 1 (21244
0 -1 0 0 0 0 -1 0
and
00 0 0
|00 -1 0 .
f Lo — At
oy =i 01 0 0 (2.122
00 0 0

Comparison with eq. (2.23) shows that C*, is nothing but (J3)*,, i.e. thé
explicit expression of J? as a 4 x 4 matrix in the four-vector representation;
Similarly we find that A%, = (K' +J?)*, and B*, = (K?® — J")* . Thes
are just the combinations that appear in eq. (2.117), so in the massless case

—-W,W* = w?(A® + B?). (2.123
Using the commutation rules of the Lorentz group, or directly the explici

expressions given above, one finds that the operators J 8 A and B close a
algebra: :

[/°,Al=+iB, [/}, B]=-iA, [AB]=0. (2.124
Formally this is the same algebra generated by the operators p®,p¥ and L*-
xp¥ — yp®, which describe the translations and rotations of a Euclidean plant
with A and B playing the role of the translation operators. This algebra &
denoted by I1SO(2). The matrices A*, and B*, given in eq. (2.121) are nd
hermitian.'? This is as it should be, since they are 4 x 4 matrices, and therefor
are a finite-dimensional representation of non-compact Lorentz generators.
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We can however represent the algebra (2.124) taking as the base space the
one-particle states with momentum p. In this representation 4 and B are her-
mitian operators because of Wigner’s theorem and, since they are commuting,
; he diagonalized simultaneously. We denote by a,b the respective

they can

cigenvalues. Then
Alpiab) =alpia,b), Blpsab) =bpiat).  (2125)

However, if a and b are non-zero, we can now find a continuous set of eigen-
values! Consider in fact the state

|p;a,b,8) = e‘ieJa}p;a, by, (2.126)
with @ an arbitrary angle. We have
Ae~®p:a, by = e (e“’ﬁAe“"”a) Ip;a,b). (2.127)
Using the commutation rules (2.124) we find that
97 4e™9° = Acos§ — Bsin® (2.128)
(this can be proved expanding the exponentials in power series) and therefore
Alp;a,b,0) = (acosd — bsin)|p;a,b,b), (2.129)

and similarly

Blp;a,b,0) = (asinf +bcosb)|p;a,b,0) . (2.130)
This means that, unless a = b = 0, we find representations corresponding
to massless particles with a continuous internal degree of freedom 6. These
representations do not so far find physical applications, and we therefore
restrict to states with ¢ = b = 0. Since for massless particles we found
~W,.W#* = w?(A® + B?), on these states (and only on these states) we have
~W,W* = 0, which agrees with the m — 0 limit of eq. (2.116). On the states
with @ = b = 0 the little group is simply SO(2) or, equivalently, U(1).

As for any abelian group, the irreducible representations of SO(2)
are one-dimensional. The generator of the group SO(2) of rotations in
the (z,y) plane is the angular momentum J* and therefore the one-
dimensional representations are labeled by the eigenvalue h of J 8. it
represents the angular momentum in the direction of propagation of the
particle (in this case, the z axis), and is called the helicity.

It can be shown that h is quantized, h = 0,£1/2,£1,.... Actually,
there is a subtle technical point in the quantization of h: the elementary
proof that, for SU(2), j. is quantized is of an algebraic nature. One de-
fines A, = {(j, m+1|(Jy+iJy)|im) and, using the commutation relations
between the three J;, one finds a recursion relation |Am—1|—[Am|? = 2m.
The condition that this recursion relation does not produce a negative
[Am|? provides the quantization of m = j..'* In the case of the little
group of massless particles we do not have J.,J, at our disposal, but
only the single SO(2) generator J, and therefore this algebraic proof
does not go through. There is however a topological proof, based on the
fact that the universal covering of the Lorentz group is SL(2,C); this
is a double covering, therefore any Lorentz rotation by 4 is the same
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13560 any book on quantum mechan-
ics, e.g. L. Schiff, Quantum Mechanics,
third edition, McGraw-Hill, New York
1968, eq. {27.23).
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as the identity matrix. A detailed discussion can be found in Weinberg
(1995), pages 86-90.

This analysis shows that massless particles have only one degree of
freedom, and are characterized by the value h of their helicity. On a
state of helicity h, a U(1) rotation of the little group is represented by

U(0) = exp{—ihd}. (2.131)

From the point of view of the representations of the Poincaré group, a
massless particle with helicity +h and a massless particle with helicity
—h are logically two different species of particles, since they belong to
two different representations of the Poincaré group. However, the he-
licity is the projection of the angular momentum along the direction of

motion, so it can be written as
h=p-J (2.132)

- where p is the unit vector in the direction of propagation. We see from
! : eq. (2.132) that the helicity is a pseudoscalar, i.e. it changes sign under
parity. If the interaction conserves parity, to each particle of helicity h
there must correspond another particle with helicity —h, and these two
: helicity states must enter into the theory in a symmetric way. Since the
‘ electromagnetic interaction conserves parity, it is more natural to define
, the photon as a representation of the Poincaré group and of parity, Le.
to assemble together the two states of helicity h = £1. The two states
h = 1 are then referred to as left-handed (h = —1) and right-handed

(h = +1) photons.
Similarly the two states with helicity h = £2 that mediate the grav:
itational interaction are better considered as two polarization states of

the same particle, the graviton:

Photon: 2 = 0, two polarization states i = £1.
Graviton: m? = 0, two polarization states h = 2.

On the contrary, neutrinos have only weak interactions (apart from the
much smaller gravitational interaction), which do not conserve parify
and the two states with helicity h = +1/2 are given different names
neutrino is reserved for b = —1/2, and antineutrino for h = +1 /2. vl

Summary of chapter

In this chapter we have introduced a number of mathematical toof
that will greatly simplify our construction of classical and quantum
theories in the next chapters. We recall some important points. ]

e Lie group, Lie algebras and their representations have been
cussed in Section 2.1. They are central concepts in modern thif
oretical physics, independently of our applications to the Lorets

and Poincaré group. Basically, Lie groups are the correct languat

for describing continuous symmetries. !



o The Lorentz group is generated by rotations and boosts, and its

algebra is given in egs. (2.27)—(2.29). We have discussed its tensor
representations in Section 2.4 and its spinorial representations in
Section 2.5. This leads in particular to the introduction of Weyl
spinors, eq. (2.56); Dirac spinors are obtained assembling a left-
handed and a right-handed Weyl spinor, and are a representation
of Lorentz and of parity transformations.

Fields are functions of the coordinates with well-defined transfor-
mation properties under Poincaré transformations. Depending on
their transformation properties under the Lorentz group, we have
scalar fields, Weyl fields, Dirac fields, vector fields, etc.

The study of the representations of the Poincaré group using as
base space the Hilbert space of one-particle states leads to massive
particles, characterized by the spin j and having 2j + 1 degrees of
freedom, and massless particles, which have one degree of freedom
and a definite helicity k. For the photon and for the graviton, par-
ity considerations suggest assembling the two states with helicity
h = +1 (for the photon) and h = £2 (for the graviton) into a
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single particle.

3

Further reading

e For Weyl and Dirac spinors see Ramond (1990),
Chapter 1 and Peskin and Schroeder (1995), Chap-
ter 3. Observe that our definitions of ¥z and ¢¥r
are inverted compared to Ramond (but agree with
Peskin and Schroeder). In particular, for us the
boost generator on v is +i0 /2 while for Ramond
is —ic/2 and as a consequence for us the four-
vector made with left-handed spinors is E%ﬁﬂﬁbh
see eq. (2.69), while for Ramond it is £; "9z
(the fact that we both say that i1 belongs to the
(1/2,0) representation is due to the fact that we
write (j_,j+) while Ramond writes (j+,5-)). In
the next chapter we will see that with our defini-

tion 4y, has helicity —1/2 (and therefore with' the
definition of Ramond it has h = +1/2). ‘

A very clear book on Lie groups for physicists is
Georgi (1999). The second edition contains many
improvements of the already ‘classical’ first edition.
For a more geometrical approach to Lie grotips, see,
e.g., Nakahara (1990), Section 5.6. An advanced
book is J. Fuchs and C. Schweigert, Symmetries,
Lie Algebras and Representations, Cambridge Uni-
versity Press 1997.

For the representations of the Poincaré group see
Sections 2.4 and 2.5 of Weinberg (1995).
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Exercises

(2.1) Consider a massive particle moving with velocity
v = tanhn. Show that, if F is the energy of the
particle and p its momentum along the propaga-

tion direction, then

_1 E+p
9=z log T p’ (2.133)




