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Outline of Lecture I

e Approaching the study of particles and their interactions:

— global and local symmetry principles;
— consequences of broken or hidden symmetries.

e Towards the Standard Model of Particle Physics:

—— main experimental evidence;
—— possible theoretical scenarios.

e The Standard Model of Particle Physics:

— Lagrangian: building blocks and symmetries;
—— strong interactions: Quantum Chromodynamics;
— electroweak interactions, the Glashow-Weinberg-Salam theory:

— properties of charged and neutral currents;
— breaking the electroweak symmetry: the SM Higgs mechanism.



Particles and forces are a realization of fundamental
symmetries of nature

Very old story: Noether’s theorem in classical mechanics
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to any symmetry of the Lagrangian is associated a conserved physical

conserved

L(q;, ¢;) such that

quantity:
> q; = x; — p; linear momentum:;

> q¢; =0; — p; angular momentum.

Generalized to the case of a relativistic quantum theory at multiple levels:

> q; — ¢;(x) coordinates become “fields”+» “particles”
> L(¢;(x),0,¢i(x)) can be symmetric under many transformations.

> To any continuous symmetry of the Lagrangian we can associate a

conserved current
oL
JH = ———0¢; suchthat 9,J" =0
0(0udpj) g



The symmetries that make the world as we know it

> translations:
conservation of energy and momentum;

> Lorentz transformations (rotations and boosts):

conservation of angular momentum (orbital and spin);

> discrete transformations (P, T,C,CP,...):

conservation of corresponding quantum numbers;

> global transformations of internal degrees of freedom (¢; “rotations”)

conservation of “isospin”-like quantum numbers;

> local transformations of internal degrees of freedom (¢;(x)
“rotations” ):
define the interaction of fermion (s=1/2) and scalar (s=0) particles in

terms of exchanged vector (s=1) massless particles — “forces”

Requiring different global and local symmetries defines a theory
AND
Keep in mind that they can be broken



From Global to Local: gauging a symmetry

Abelian case

A theory of free Fermi fields described by the Lagrangian density
L =(z)(ig — m)y(z)
is invariant under a global U(1) transformation (a=constant phase)
Y(z) — e"“p(x) such that 9,9(x) — "0, (x)

and the corresponding Noether’s current is conserved,

J = Y(z)y () — 0, JJM =0
The same is not true for a local U(1) transformation (o = a(x)) since
Y(x) = e Dp(x) but 9uy(x) = W ap(x) +ige D a )y (x)
Need to introduce a covariant derivative D,, such that

Duy(x) — e Dyy(x)



Only possibility: introduce a vector field A,,(z) trasforming as

A (z) = Au(z) gc‘mm)

and define a covariant derivative D,, according to
D, =0,+1i9A,(x)

modifying £ to accomodate D, and the gauge field A, (x) as

1

£ = (@) (1P~ m)b(@) — {F* () Fyu ()

where the last term is the Maxwell Lagrangian for a vector field A*, i.e.

Fou(@) = 8,4, (x) - 8,A,(x)

Requiring invariance under a local U(1) symmetry has:

—— promoted a free theory of fermions to an interacting one;
—— defined univoquely the form of the interaction in terms of a new vector

field A*(x):
Lint = —gih(x) () A (2)
— no mass term A*A, allowed by the symmetry — this is QED.



Non-abelian case: Yang-Mills theories

Consider the same Lagrangian density

L = () (id — m)y(z)

where ¢(z) — ¥;(x) (i =1,...,n) is a n-dimensional representation of a
non-abelian compact Lie group (e.g. SU(N)).

L is invariant under the global transformation U («)
Y(x) = ¢ (2) =U(a)g(z) ,  Ula) =" =1+ia"T*+ O(a?)

where T ((a = 1,...,d.q;)) are the generators of the group infinitesimal

transformations with algebra,
[Ta, Tb] _ ,L-fabcTc

and the corresponding Noether’s current are conserved. However, requiring

L to be invariant under the corresponding local transformation U(z)
U(z) =1+ ia*(x)T* + O(a?)
brings us to replace 0,, by a covariant derivative

D, =0, —igAj(x)T*



in terms of vector fields A7 () that transform as
a a 1 a aoc C
Au(aj) — Au(x) -+ gﬁua () + f b AZ(:I:)oz ()

such that

D, — U(z)D, U '(x)
Duble) — U@DU @)U (@) = U(x)Dyb(a)
Fuyzé[D“,Dy] — U(z)F,U ()

The invariant form of £ or Yang Mills Lagrangian will then be

Loar = L(w, D) — iTrFWFW (iD= m) — SFe

4 ur - a
where Fy, = F,T" and

F?, = 0,A% —0,A% + g fabCAzAg



We notice that:

e as in the abelian case:

— mass terms of the form A**AJ are forbidden by symmetry: gauge

bosons are massless

— the form of the interaction between fermions and gauge bosons is

fixed by symmetry to be

Lint = —g(@)7, T () A" ()

e at difference from the abelian case:

— gauge bosons carry a group charge and therefore ...

— gauge bosons have self-interaction.



Feynman rules, Yang-Mills theory:
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Spontaneous Breaking of a Gauge Symmetry

Abelian Higgs mechanism: one vector field A#(x) and one complex
scalar field ¢(z):

L=1La+Ly

where

L4 = —iF“’/FW _ —i(amv OV AN, Ay — D, A)

and (DH=0" 4 igA*)
Ly =(D"¢)"Dup —V(¢) = (D"¢) Do — 1i*¢"¢ — A(¢" )’

L invariant under local phase transformation, or local U(1) symmetry:

d(z) — ()

Al(z) - Aﬂ(a;)+$aua(x)

Mass term for A* breaks the U(1) gauge invariance.



Can we build a gauge invariant massive theory? Yes.

Consider the potential of the scalar field:
V(p) = u?¢*d + A(¢* )

where A >0 (to be bounded from below), and observe that:
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o 11>>0 — electrodynamics of a massless photon and a massive scalar
field of mass u (g=—e).

e 11 <0 — when we choose a minimum, the original U(1) symmetry
is spontaneously broken or hidden.

N2
n=(-55) =75 — @) =d0+ 5 (Ga) + idao)

2\ V2 V2
U
1 v 1 2 2 1 2 2 .2 1 2
L= —ZF“ F,,+ 5970 AFA, + 5(a“gbl) + pu P71 + 5(8%2) + gvA,, 0" pa + . ..
massive \:erctor field massive ;galar field Goldsto;e boson

. The ¢5 field actually generates the correct transverse

structure for the mass term of the (now massive) A* field propagator:

AR = (9“” - kﬁ) -



More convenient parameterization (unitary gauge):

Z-XS;’B) .
o@) = o+ H) D j§<v+H<x>>

The x(z) degree of freedom (Goldstone boson) is rotated away using gauge

invariance, while the original Lagrangian becomes:
2,2

v 1
L=La+ A+ < (0" HOLH + 207 H?) + ...

which describes now the dynamics of a system made of:

e a massive vector field A" with m2 = g%v?;
e a real scalar field H of mass m% =—2u2=2XMv?: the Higgs field.

4

Total number of degrees of freedom is balanced



Non-Abelian Higgs mechanism: several vector fields A% (x) and several

(real) scalar field ¢;(x):
1 A
L=LatLly . Ly= (DM —V(0) . V(6)=ud+ 50"

(u? <0, A>0) invariant under a non-Abelian symmetry group G-
o =T

¢@' — (1 —+ iaata)ijqu — (1 — aaTa)ij¢j

(s.t. D=0, + gA;T?). In analogy to the Abelian case:

1 1 ) )
§(Du¢)2 — ...+ 592(T Qb)i(qub)iAMAb“ 4.
¢min:¢ ]. a a
pins®o +§§2(T ¢O)i(Tb¢0)£AMAb“—I—...:
2
ab
Ty # 0| — massive vector boson + (Goldstone boson)

—— massless vector boson + massive scalar field

Ty =0




Classical — Quantum : V(p) — Vers(oel)

The stable vacuum configurations of the theory are now determined by the

extrema of the Effective Potential:
1

Vers(pea) = —ﬁreffkbcz] , Qe = constant = @
where
oW\ J
Copsloal =W = [ dI)6a() + éata) = 57 = 0160},

W[J] — generating functional of connected correlation functions
I'crrlder] — generating functional of 1PI connected correlation functions

Verfr(wer) can be organized as a loop expansion (expansion in h), s.t.:

Veff(@cl) — V(SOCJ) + loop effects

SSB — non trivial vacuum configurations



Gauge fixing : the 7 gauges. Consider the abelian case:
1 *
L= _ZF'LLVFIUJ/ + (DM¢) D,u¢ T V(¢)
upon SSB:

(v + ¢1(x)) +id2(x))
4
1

L= PR Bt 3 (061 + A" 62)* + 5(0"62 — g AM (0 + 1)) — V()

Quantizing using the gauge fixing condition:

1
G = ﬁ(%fl“ +Egveo)

¢(z) =

Sl

in the generating functional

7 = C/DAD¢1D¢2 exp U dx (c— —GQ)] det (fsi)

( — gauge transformation parameter)



L %GQ = —%AM (—g“”82 (1 - —> 99" — (g )2gW> A,

(0,61 — 53,84 2 (0u62)” — 5 (g0)°63 +
_|_
Lohost = C [—82 — §(gv)2 (1 + %)] C
such that:

A i O ¢ ki
WA = (-5 )+ e (T
P1(k)p1(—Fk)) = -3 — 5

@ROR) = .

(02(R)a(K)) = {elR)e(—)) = oz

Goldtone boson ¢, <= longitudinal gauge bosons




Towards the Standard Model of particle physics

Translating experimental evidence into the right gauge symmetry group.

e Electromagnetic interactions — QED

> well established example of abelian gauge theory
> extremely succesful quantum implementation of field theories
> useful but very simple template

e Strong interactions — QCD

> evidence for strong force in hadronic interactions

> Gell-Mann-Nishijima quark model interprets hadron spectroscopy
> need for extra three-fold quantum number (color)

te~ —hadrons, ...)

> natural to introduce the gauge group — SU(3)c

(ex.: hadronic spectroscopy, e

> DIS experiments: confirm parton model based on SU(3)¢c
> ... and much more!

e Weak interactions — most puzzling ...

> discovered in neutron (-decay: n — p+e~ + Ve

> new force: small rates/long lifetimes

> universal: same strength for both hadronic and leptonic processes
(n—=pe Ve, m —u +Uy, 4 —€ Uetvy,...)



> violates parity (P)

> charged currents only affect left-handed particles (right-handed

antiparticles)

> neutral currents not of electromagnetic nature

> First description: Fermi Theory (1934)

Cr = % (a1 — 75)n) (7" (1 — 75)1e)

—2

Gr — Fermi constant, [Gr] = m™~ (in units of c = h = 1).

Easely accomodates a massive intermediate vector boson

Lrve = %WJJM_ +he.
with (in a proper quark-based notation)
J —fc_wul _2’Y5al—|—17e pl _2756
X5
—
provided that, d Ve d De
£ My — GE_ 9



> Promote it to a gauge theory: natural candidate SU(2), but if
T2 can generate the charged currents (T+ = (T £4T?)), T3
cannot be the electromagnetic charge (Q) (T° = 0°/2’s
eigenvalues do not match charges in SU(2) doublets)

> Need extra U(1)y, such that Y = T° — Q!

> Need massive gauge bosons — SSB

4

SSB

SU(2)L xU(l)y =— U(1)q

‘CSM — *CQCD + ‘CEW

where

_ ferm auge SSB Yukawa
'CEW T ‘CEW + ‘C%Wg + ‘CEW + 'CEW



Strong interactions: Quantum Chromodynamics

Exact Yang-Mills theory based on SU(3)c (quark fields only):
1

Loco = Y0 QuliP—my) Qs — [ F" I,
with
D, =9, —1igA;T*
a a a abc Ab Ac
Fo, = 0,A7 — 0, A +gf" A, A}
e Q) — (i=1,...,6 > u,d,s,c,b,t) fundamental representation of

SU(3) — triplets:
Qi
Qi=|
Qi

o A% — adjoint representation of SU(3) — N? — 1 = 8 massless gluons
T* — SU(3) generators (Gell-Mann’s matrices)



Electromagnetic and weak interactions: unified into
Glashow-Weinberg-Salam theory

Spontaneously broken Yang-Mills theory based on SU(2)r x U(1)y.

e SU(2)r — weak isospin group, gauge coupling g:
> three generators: T" = ¢'/2 (0 = Pauli matrices, i = 1,2, 3)
> three gauge bosons: W/, W} and W
> 1, = =(1 — 75)% fields are doublets of SU(2)
> Yr = 5(1 4+ v5)v fields are singlets of SU(2)
> mass terms not allowed by gauge symmetry

e U(1l)y — weak hypercharge group (Q = T5 +Y), gauge coupling g':

> one generator — each field has a Y charge
> one gauge boson: B*

Example: first generation

VeL
Ly = (Ver)y=0 (er)y=-1
€L
Y=—1/2

ur
QL = < > (UR)Y:2/3 (dR)Y:—1/3
Y=1/6

dr,




Three fermionic generations, summary of gauge quantum numbers:

SUB)e SU2)r UQ)y UQ)g

~ O
S =
| I
/—\ /—'\
S Q
~ ~ t~ ~
N—— N——
I/ o
K
S & 8
\/ v
VR P
N~
SN SIS,
\/ v
— w
(\W) (\W)
| o=
N~
| o | wiN
— Wl

where a minimal extension to include v}, has been allowed (notice however

that it has zero charge under the entire SM gauge group!)



Lagrangian of fermion fields

For each generation (here specialized to the first generation):

Lo’ = L) Lp+er(iD)er+ver(iD)ver+Qr(iP)Qr+ur(iD)ur+dr(iD)dr
where in each term the covariant derivative is given by

o 1
Dy =0, —igW,T" —ig' Y B,

and T° = 0" /2 for L-fields, while T" = 0 for R-fields (i = 1,2, 3), i.e.

ig 0 W,/ i [ gW. —4g'YB, 0
Dy = 0Ou-— E N 9 3 /
W, 0 0 —gW,, —g'YB,
!
Dyr = 0u+tig §YBM
with
1
+ 1 2
%% — (Wu F ZWM)



L£rm can then be written as

£fEe‘I/'Vm _ £ferm + LC’C’ + £NC’

kin
where
Lf]g;,bm = EL(Z@)LL + éR(ié?)eR + ...
g _ o
Loco = EW;VeL"YMeL + W, erY ver + ...
/
LNC’ — gWS [DeL’yMVeL — éLW'”L@L] + %B,u [Y(L>(DeL7'UJVeL + éL’YIQLeL)
-+ Y(@R)DGR’Y'LLVGR—I—Y(GR)ER’Y’“@R] + ...
where

W+ = % (Wl} F lef) — mediators of Charged Currents
0

W3 and B

; — mediators of Neutral Currents.

4

However neither WE nor B, can be identified with the photon field A4,,,

because they couple to neutral fields.




Rotate WS and B, introducing a weak mixing angle (0y)

WS = sinfw A, +cosbw 2,
B, = cosOwA, —sinbwz,

such that the kinetic terms are still diagonal and the neutral current
lagrangian becomes

Lnc = Py* (g sin Ow T + ¢ cos HWY) YA, Py (g cos Oy T° — ¢ sin Oy — )sz

for 9! = (ver, €L, Ver, €r,...). One can then identify (Q — e.m. charge)

Y
eQ = gsin by T + ¢’ cos HWE

and, e.g., from the leptonic doublet L; derive that

/
2 sinfy — L cosOy =0

/
—5sinfy — & cosby = —e

— gsinfy = ¢’ cosOy = e



where

vf

af

3
a Qf * QSWCW
3
1




Lagrangian of gauge fields

where
B, = 0,B,—9,B,
we, = 0WI—0,Wi+ ge™ W W

in terms of physical fields:

gauge __ pgauge 3V 4v
L =L + Low + Lpw

EW kin
where
LR = (W — 0, W)@ W — W)
1 1 v v
— Z(ﬁuZ,, — 0 Z,)(O"ZY — 0" ZM) — Z(auAy — 0y A,) (0" A” — 9" A™)
Lyw = (3-gauge-boson vertices involving ZW W~ and AWTW )
Lyw = (4-gauge-boson vertices involving ZZWTW =, AAWTW

AZWTW ™, and WTW-WTW ")



k —1 k,uku
AV AVERE Juv — 5o

wov k2 — M2 M2
Wl
(?;Q\_/—\/ — ’L@CV [g,ul/(k—l- — k_)p + gyp(k— - kV)/J =+ gP,Uu(kV o k+)V]
Vo
WW_/j v,
;Lifz = ’i€2CVV/ (2gwgpg — 9upYdve — g,uang)
W, v,
where -
SW
and
2 1
Cw ‘w il
= — = — 5 C — T CWW T
Cry 1, Czz 2 A 2



SSB

The Higgs sector of the Standard Model: SU©2). x U(1)y Z5 U(1)g

Introduce one complex scalar doublet of SU(2)y with Y =1/2:
¢+
b = ( g ) — L3 = (D'¢) Do — i2e 6 — A(o1e)’
where D¢ = (0, —igWiT* —ig'YyB,), (T*=0"/2, a=1,2,3).

The SM symmetry is spontaneously broken when (¢) is chosen to be (e.g.):

1 0 | ar 1/2 :
<¢>—\/§<v> with v—(T> (u” <0, A>0)

The gauge boson mass terms arise from:

v

1 0
(DM¢)TDM¢ — .+ g(O U) <9W50-a _i_g/B’u) (ng,LLO.b _i_g/BM) < > + ..

1 v?
— A W)+ (W) + (—gW, +9'Bu) + -



And correspond to the weak gauge bosons:

1 .

(!

Z, =

3 _ 2 120
\/92+g/_2(gW“ 9Bu) — |[Mz= V9" +9%;

while the linear combination orthogonal to Z,, remains massless and
corresponds to the photon field:

Ap = —=—=—=(g'W, +9B.) — |Ma=0

. using the definition of the weak mixing angle, 6,,:

/
J sin 6, = =

cosf, =

the W and Z masses are related by: | My, = Mz cos 8,




The scalar sector becomes more transparent in the unitary gauge:

evX(@)F 0 SU(2) 1 0
Ha) = V2 <U+H(:c)> 7 gb(w)\f(v—FH ))

after which the Lagrangian becomes

1 1 A 1
L= p*H? — \wH> — ZH4 =5 2 H? — \/;MHH3 - ZAH‘L

Three degrees of freedom, the x*(x) Goldstone bosons, have been
reabsorbed into the longitudinal components of the Wﬁt and Z,, weak

gauge bosons. One real scalar field remains:

the Higgs boson, H, with mass | M7 = —2u* = 2\v?

and self-couplings:

H_ H_ _H
\\\\ ,M2 \\\\ //// .M2
>-——-H= —SZTH X_ = —SZU—QH



From (D*¢)'D, ¢ — Higgs-Gauge boson couplings:

vH VvH H

. 2 /// L] 2

S MV v . _ MV uv
} N=2 v 9" }\\ . v 9
VV VV \\H

Notice: The entire Higgs sector depends on only two parameters, e.g.

My and v

v measured in p-decay: — |SM Higes Physics depends on My

v = (vV2Gp)"/2 =246 GeV



Higgs boson couplings to quarks and leptons

The gauge symmetry of the SM also forbids fermion mass terms

(mg, QL ubk, . ..), but all fermions are massive.

4

Fermion masses are generated via gauge invariant Yukawa couplings:
Loy = —TIQy ey — T QLéd), — TV Lol + hic.
such that, upon spontaneous symmetry breaking:

v+ H

v+ H - v+ H
— — I4, + h.c.
v2

Yukawa _ L 17 =1
L = —I'Ju;

J _ 1Tij7t
EW U dR Fe lL

I
|
-
“E:
mb.
R
—_
_|_
N~
_|_
=
a

where

is a non-diagonal mass matrix.



Upon diagonalization (by unitary transformation Uy, and Ug)
Mp = (U]) MU},
and defining mass eigenstates:
1= (U0)if] and [ = (Uh)ifh

the fermion masses are extracted as

H
croe = N FlU MU £ <1+U)+h.c.
Jii,J

= oy G+ Fatp) (14 )

fri.g



In terms of the new mass eigenstates the quark part of Lo now reads

g _ii u\Trrd J
L = a7 (U'U Pd’ + h.c.
CC \/§ L[( L) R]’Y L

where
Vern = (UEL)TUJ%

is the Cabibbo-Kobayashi-Maskawa matrix, origin of flavor mixing in the
SM.

4

see (. Buchalla’s lectures at this school



