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he operators are just the fields, so in the Heisenberg representation
‘he quantum fields depend both on x and ¢ while in the Schrodinger
epresentation they depend only on x. The Heisenberg representation
< therefore more natural from the point of view of Lorentz covariance.

Given a state |a)(t) in the Schrodinger representation, in the Heisen-
Lerg picture we define the state |a)u as layg = e*|a)(t). If A is an op-
rator in the Schrédinger representation, the corresponding Heisenberg
operator Ag is defined as Au(t) = etHt ge—iHt Since |a)(t) evolves with
.~Ht and A is time-independent, by definition in the Heisenberg pic-
tre the states |a)g are independent of ¢ while the operators Ay evolve
with time. Writing |a)u = ¢iHt|g)(t) at time t = 7; and recalling that
we denoted |la)(T;) simply as |a), we can write

la, Tiyu = % |a) . (5.13)

Note that, even if it is time-independent, the Heisenberg state |a)g car-
Ties a label T; which was implicit in the definition of |a), and therefore
we have denoted it as |a,Ti)x. This label tells us of what Heisenberg
uperator the state |a, T;)u is an eigenvector. For instance, suppose that
in the Schrodinger representation the state |zo), at ¢ = to, is an eigen-
vector of the position operator Z, and let 2 (t) = e*t2e=**. Then the
state |zo,to)H = et |z)(t) is an eigenvector of the Heisenberg position
aperator @3 (to) but it is not an eigenvector of the operator £y (ty) with
iitl :lé to.

Similarly to eq. (5.13) (and omitting hereafter the subscript “H” on
L;states in the Heisenberg representation), we have
L
t

1b,77) = €17 b), (5.14)

“and in terms of the states in the Heisenberg picture the matrix element

(5.5) is written as
: ®ISla) = (b, Tyla. T2) . (5.15)

5.2 The LSZ reduction formula

Consider a generic S-matrix element written in the Heisenberg picture,
(p11p25'-‘1pﬂ;TfIk17k2:'-‘akm;T'i)- (516)

It is understood that at the end of the computation Ty — +00 and
T, — —oo. For notational simplicity we consider a single species of
neutral scalar particle, so the states are labeled just by their momenta,
but all our considerations can be generalized to particles with spin. Qur
first step will be to relate this matrix element to the expectation value
of some operator on the vacuum state.

We begin by observing that the expansion of a free real scalar field in
terms of creation and annihilation operators, eq. (4.2), can be inverted
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112 Perturbation theory and Feynman diagrams

T

1The most important example where
the interaction does not decrease at
large distances is the interaction of
quarks in QCD. As a consequence,
quarks are not seemn as free particles
(they are “confined” inside hadrons),
and the free particles seen at ¢ — +oo
are rather the hadrons. We will discuss
in Problem 8.2 how to proceed in these
cases.

2Using a technique known as Kallen—
Lehmann representation (see Weinberg
(1995), Section 10.7) one can show that
eq. (5.19) cannot hold as an opera-
tor equation, since otherwise one would
find that Z = 1 and that ¢ is a free field;
see, e.g., ltzykson and Zuber (1980),
Section 5.1.2.

to give
(2B )M ?ax = ] 5% Doicee (5.17)
(2B ) ?a], = —i / d*z e Byiree (5.18)

as one eagily verifies substituting eq. (4.2) in the above equations and
performing the integration over d3z. Note that in eqs. (5.17) and (5.18)
the integrands are time-dependent but the integrals are independent of
t. We have denoted the field by @free tO stress that egs. (5.17) and (5.18)
hold only if the field is free. When the field is not free, it cannot be
expanded in terms of creation and annihilation operators as in eq. (4.2),
and egs. (5.17) and (5.18) do not hold.

However, ast — —00 We intuitively expect that the theory reduces to
a free theory, since all incoming particles are infinitely far apart and, if
the interaction decreases sufficiently fast with the distance, there will be
no difference between a free and an interacting theory.> These intuitive
considerations are formalized by the hypothesis that, as t — —00,

$(z) — 2" ¢in(2), (5.19)

where ¢, (z) is a free field and 7 is a c-number, known as wave function

renormalization. We will discuss later the physical meaning of Z, and b

how to compute it. Similarly we assume that, as t — +00,

(}5(3’:) 5 Z1/2¢out (CC) , (5.20) .

with @ous again a free field, and the same constant Z. The limits in i
eqs. (5.19) and (5.20) must be understood in the weak sense, i.e. they
are assumed to hold not as operator equations, but only when we take |

matrix elements.?

We now consider eq. (5.18) with @i, playing the role of the free
field dgree. As we observed above, the integrand in eq. (5.18) is time- ]
dependent, but the result of the integration is independent of t. We can

therefore perform it at t — —o0, and use eq. (5.19) to write

(2B )bt = —i f

t——00

. —
dﬁx e*zkm 60¢in

——iz"V? lim [ d’ze s, (5204

— =00

where the superscript “in” means that the operator a;rc acts on the space
of initial states at T; = —oo. Similarly, we define creation operators |

acting on the final states as
t——+co

T , _@w f dre e §0¢. (5.22.)"

i —
dPz e ** Bodout

WM ot o U o~
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| Observe that in egs. (5.21) and (5.22) the final integral depends on time,
| since it is performed with ¢ rather than with a free field; al"™ is defined

-aking the limit £ — —oo of this integral while aL'(‘m) is defined taking

| the limit t — oo, and the relation between in and out creation oper-

ators is non-trivial. Recalling our normalization (4.10) for one-particle

states, we see that we can eliminate the particle with momentum k;
from the initial state writing

L (P1,P2, .-+, P Trlk1, ko, - - K T2

b= (2B, )01, D2, 1 Do; Trlal ™ [k, .., s T) (5.23)

= —z'Z‘l/zt_l}I_nmfd%:e‘““‘m(pl,pg,...,pn;Tf| Sodlka, ..., km;Ti) .

The idea is to iterate the process removing all particles from the initial
“and final states. We perform the computation in detail.

First of all, eq. (5.23) can be written in an explicitly covariant form. We

' use the fact that, for any integrable function f(f,x ), we have the identity

( lim —tliglm)fdazf(t,x)=fm dtg;/d"xf(t,x).'  (5.29)

t— 400

: Applying this identity to the function f(f,x)’; —iZ "2 gmika (';:;qb and using
egs. (5.21) and (5.22) we find

(2B )2 (al ) — gh(ew0)y — j7-1/2 f dzdole™ B d).  (5.25)
The integral in this equation can be written in a covarian£ form observing that
f d*z 80(e=** 8y ¢) = ] 4z 8o(e~* B0 — ¢ Boe~ )
= f d'z (e 05 — 05 ™*)
= [ats [e=0ks - 4(v" - m™) e7] | (5.26)

where in the last line we used the fact that k> = m?, since k* is the four-
momentum of an initial or final particle with mass m, and therefore 82e~** =
(V2 — m?)e ™= It is understood that our initial and final particle states,
which' we have written simply as states with definite momentum, i.e. plane
waves, will be convoluted to form wave packets, so at each given time they
are localized in space. This means that we can integrate V2 twice by parts
(while 8y cannot be integrated by parts, since ¢ is not localized in time), and

we find
(2B (@™ - sl = gz [ d'ze”**(0+ m?)g(z).  (5.27)
Therefore
(2Bi,)"*(p1, P2, ., Pn; Trlal ™™ — ol ks, . ks To) (5.28)
=4z "2 fd%e‘““”(l:i + M) (P1, P2y -, Pr; Tr|(2) Kz, ey T -

5.2 The LSZ reduction formula 113

The reader uninterested in the deriva-
tion can just take note of the def-
inition of time-ordered product in
eq. (5.32) and then can jump directly
to eq. (5.40).
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114 Perturbation theory and Feynman diagrams

3In the language of Feynman diagrams
that we will explain below, this means
that we can restrict to connected dia-
grams.

The operator cz)f (°u) acts on the state to its left, destroying an out particle with
momentum k;. We assume that none of the initial momenta p; coincides with
a final momentum k;. This eliminates processes in which 6ne of the particles
behaves as a “spectator” and does not interact with the other particles.® Then
Tl{"“) acting on the state on its left gives zero, because the particle that it
would annihilate is absent, and the left-hand side of eq. (5.28) coincides with
the expression that appears in eq. (5.23).

The conclusion is that we can remove the particle with momentum k; from

the initial state, at the price of inserting the operator
i771/2 / dze™™1%(0 + m)é(z) (5.29)

in the matrix element, i.e.

(pl,pz,...,pn;Tf!kl,kz,.‘.,km;ﬂ) (5.30)
- iZ_l/z fd4$e_iklm(u + m2)(p11p2; EEREY S Tfl(ﬁ(:‘ﬂ)lkz, v ;km; :r‘) ‘

Now we would like to iterate the procedure, eliminating all initial and final par- |

ticles and remaining with the vacuum expectation value of some combination
of fields. For instance, we next eliminate the final particle with momentum
p1. Following the same strategy adopted before, we write

(P1, P2, .., Pn; Ts () k2, .. ., Kom; T3}
= (2Ep,)*(p2, .. ,pn,Tf|a(°“*’¢(x)|k2,. ks Ty (5.31)

We now define the time-ordered pmduct, or simply the T-product, of two fields
as follows, .

T{p(y)p(z)} = { ¢($)$g§ )0 < 20 (552 .E |
T{d(y)¢(z)} = 0(3° — 2°)$(v)d() + 8(z° — 1°)p(2)d(y), (559)

where 0(z°) is the step function: 8(z°) = 1if z° > 0 and 6(z° )y=0ifz% <0

Taking the hermitian conjugate of eq. (5.21) we see that ag,l) is constructed

in terms of ¢{y) with y° — —co, and therefore

T{afP ¢(x)} = $(z)al® . (5.:34) |

Similarly, a$," is constructed in terms of ¢(y) with y° — +oco and

T{af9¢(@)} = ol ¢ (z). (5.35) ;

We can use this to write the right-hand side of eq. (5.31) as

(2Ep) % (P2, .., P THIT{(aE™ — ) p(2)} ks, ... ks T2} . (5.36)

In fact, the first term in the T-product is the same as the original ex ressmn m |
eq. (5. 31) while the second gives zero since we have seen that T{aPl Plz)r= |}

#(z)al™ and then a&® annihilates the state on its right (recall that we are

assuming that the final momenta p; are different from any of the initial mo-

menta k;).




The advantage of the form (5.36) is that the combination a$™" — al® is

| given in terms of a covariant expression involving the ¢ field, which is _]ust the
| hermitian conjugate of eq. (5.27),

(2Eg, )"/? (a0 — M) = iz~ f d*y e (0, + mHé(y). (5.37)

. Therefore

(Pl,Pzr--:Pn$Tf‘¢($)1k2s-wakm;ﬂ) (538)
_iz2 [ @y, + m o P TTEHD i K T,

where Oy = 3—,, a 4 Putting together egs. (5.30) and (5.38) we find the

| result of ellmmatmg the partmles with momenta ki and pi,

(pl,pz,---,pn;Tflkhkz,.--,km;ﬂ) (5.39)
:(iz—1/2)2fd4me-iklz(mm+m2)[d4ye+ip1y(my_I_mZ)
%P2y, Pr; Tr[T{b(y)p(z) Kz, . ki Ti) -

The procedure can now be iterated in a straightforward way, and the
result is

<p17 Pnan|k1, km;T)

= (iZ~ 1/2)n+m_/Hd4$z H d'y; exp(i pry’ - ZZ B}

3—‘1 Jj=1i 1=l

(Oy, +m*)OT{¢(21) ... d(yn)}0),  (5.40)

where the T-product T{qb(xl ..¢(yn)} by definition orders the n +
m fields ¢(x1),-..,0(Ym) accord1ng to decreasing times, so that larger
times are leftmost. The vacuum at ¢ = £oo is the perturbative vacuum,
ie. the vacuum used in the construction of the Fock space of the free
theory.?

As we explained in Section 5.1, (p1...Pn; T¢|k1 ... km;Ti) is the ma-
trix element in the Heisenberg representation. In the Schrodinger rep-
resentation we write instead

(P1...PnlSlk1. . k) ' (5.41)

x(Og, +m?)...

We have also defined the operator T from S = 1+¢T". Since in eq. (5.40)
we restricted to the situation in which no initial and final momenta co-
incide, the matrix element of the identity operator between these states
vanishes, and we have actually computed the matrix element of T, i.e.
of the non-trivial part of the evolution operator,

(B = ¢ paliT|ky - . . km)
™m n T T
= (1Z~1/2)ntm f H dtxz; H d*y; exp(i ijyj -1 Z kiz;)
= j=1 j=1 =1

x(Og, +m?). .. (Oy, + m}){OT{¢(z1).. ¢(ya)}0).  (5.42)

5.2 The LSZ reduction formula 115

4A very technical remark: writing
eq. (5.38) we have extracted Oy from
the T-product; strictly speaking this
is mot correct, because 8/8y" does
not commute with the theta function
that enters in the definition of the T-
product, since 856(x) = &(x). How-
ever, a simple calculation shows that
the additional term is proportional to
5z — y0)0d(w), d(@)] ~ 6@ (z — y)
and the inclusion of this Dirac delta
(and of its derivatives, coming from act-
ing on it with the Oz operators present
in the LSZ formula) modifies the final
result for the LSZ formula, eq. (5.46),
by the addition of terms which are poly-
nomial in the four-momenta. Since
however both the left-hand side and the
right-hand side of eq. {5.46) are pole-
like in the four-momenta, i.e. propor-
tional to factors 1/(p? — m?), the ad-
dition of a regular term is irrelevant
when we go on mass shell, i.e. when we
set p® = m?2; see the discussion below

eq. (5.46).

50Observe that initial ome-particle
states are defined from |k) =
(2B )/ 2a, T(0)|0) and final states
from |k} = (2Ek)1f2akf (out) |0},
with the same state |0) in both cases,
including its phase.
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116 Perturbation theory and Feynman diagrams

We now define the N-point Green's function

G, ..., zn) = (O|T{$(z1) ... d(zn)}|0). (5.43)

In terms of its Fourier transform G, we have
N
d*ki =i ki A
G(xl,...,mN)—fEWe =t G(kl,...,kN). (544)

Using

(ij +m2)G(z1, ,SL‘N)

/ H (% m2)e~ S ek Gky, . ky), (5.45)

eq. (5.42) can be rewritten as

m n
T [ ataemton T [ atyeriom
=1 J==1

x(0|T{¢(3:1) ¥ ¢(wm)¢(y1) .- $(yn)}0) (5.46)

i=1 "t _7=1

This is the Lehmann-Symanzik-Zimmermann (LSZ) reduction formula
It is 1mportant to understand the meaning of the factors k2 — m? and
pj m? in the denommator Of course for a physical pa.rtlcle with four-
momentum p* we have p?> —m? = 0 (which is often expressed saying that
the particle is “on mass shell”). The meaning of these factors is that
we must first compute the left-hand side of eq. (5.46) working off mass
shell, i.e. without using any relation between p and p2. In the limit

in whlch we send the particles on mass shell, the left-hand side develops 1

poles of the form 1/ (k7 —m?) for each incoming particle and 1/ (p? —m?)
for each outgoing partlcle These factors cancel the same pole factors
which appear explicitly on the right-hand side, and we remain with an
equation between quantities that are finite when the particles are on
mass shell.

We have therefore succeeded in relating the scattering amplitude to
the vacuum expectation value of a time-ordered product of fields. In the
next section we will see how the latter can be computed order by order
in perturbation theory.

9.3 Setting up the perturbative expansion

At the classical level, the field ¢(z) satisfies a complicated non-linear
equation of motion, determined by the full Lagrangian Ly + L;,, which
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