PHY 5667 : Quantum Field Theory A, Fall 2017

October $5^{\text {th }}, 2017$
Assignment \# 3
(due Thursday October $19^{\text {th }}$, 2017)

1. This problem teaches you how to calculate $\langle\Omega| T \phi\left(x_{1}\right) \ldots \phi\left(x_{n}\right)|\Omega\rangle$ using canonical quantization. We will discussed some of its steps in class, on Tuesday Oct. 10. It could be beneficial for you to have a look at the problem before the lesson.
Consider a quantum system of fields with Hamiltonian density $\mathcal{H}=\mathcal{H}_{0}+\mathcal{H}_{1}$ where $\mathcal{H}_{0}=$ $\frac{1}{2} \pi^{2}+\frac{1}{2}(\nabla \phi)^{2}+\frac{1}{2} m^{2} \phi^{2}$, and \mathcal{H}_{1} is a function of $\pi(0, \mathbf{x})$ and $\phi(0, \mathbf{x})$ and their spatial derivatives. (It should be chosen to preserve Lorentz invariance, but we will not be concerned with this issue here.) Let us define $|\Omega\rangle$ to be the vacuum state of H such that $H|\Omega\rangle=0$, and let us instead denote by $|0\rangle$ the vacuum state of H_{0} such that $H_{0}|0\rangle=0$. The Heisenberg-picture field $\phi(x)$ is

$$
\phi(t, \mathbf{x}) \equiv e^{i H t} \phi(0, \mathbf{x}) e^{-i H t}
$$

while the interaction-representation or interaction-picture field is defined as

$$
\phi_{I}(t, \mathbf{x}) \equiv e^{i H_{0} t} \phi(0, \mathbf{x}) e^{-i H_{0} t}
$$

1.a Show that $\phi_{I}(x)$ obeys the Klein-Gordon equation, and hence is a free field.
1.b Show that $\phi(x)=U^{\dagger}(t) \phi_{I}(x) U(t)$, where $U(t) \equiv e^{i H_{0} t} e^{-i H t}$ is unitary.
1.c Show that $U(t)$ obeys the differential equation $i \frac{d}{d t} U(t)=H_{I}(t) U(t)$, where $H_{I}(t)=$ $e^{i H_{0} t} H_{1} e^{-i H_{0} t}$ is the interaction Hamiltonian in the interaction representation, and the boundary condition is $U(0)=1$.
1.d Show that if \mathcal{H}_{1} is specified by a particular function of the fields $\pi(0, \mathbf{x})$ and $\phi(0, \mathbf{x})$, show that $\mathcal{H}_{I}(t)$ is given by the same function of the interaction-picture fields $\pi_{I}(t, \mathbf{x})$ and $\phi_{I}(t, \mathbf{x})$.
1.e Show that, for $t>0$,

$$
U(t)=T \exp \left[-i \int_{0}^{t} d t^{\prime} H_{I}\left(t^{\prime}\right)\right]
$$

obeys the differential equation and boundary conditions of part (1.c). What is the comparable expression for $t<0$? (Hint: you might need to define a new ordering symbol.)
1.f Define $U\left(t_{1}, t_{2}\right) \equiv U\left(t_{2}\right) U^{\dagger}\left(t_{1}\right)$ and show that for $t_{2}>t_{1}$

$$
U\left(t_{2}, t_{1}\right)=T \exp \left[-i \int_{t_{1}}^{t_{2}} d t^{\prime} H_{I}\left(t^{\prime}\right)\right]
$$

What is the comparable expression for $t_{2}<t_{1}$?
1.g For any time ordering show that $U\left(t_{3}, t_{1}\right)=U\left(t_{3}, t_{2}\right) U\left(t_{2}, t_{1}\right)$ and that $U^{\dagger}\left(t_{1}, t_{2}\right)=$ $U\left(t_{2}, t_{1}\right)$.
1.h Show that

$$
\phi\left(x_{n}\right) \ldots \phi\left(x_{1}\right)=U^{\dagger}\left(t_{n}, 0\right) \phi_{I}\left(x_{n}\right) U\left(t_{n}, t_{n-1}\right) \phi_{I}\left(x_{n-1}\right) \ldots U\left(t_{2}, t_{1}\right) \phi_{I}\left(x_{1}\right) U\left(t_{1}, 0\right)
$$

1.i Show that $U^{\dagger}\left(t_{n}, 0\right)=U^{\dagger}(\infty, 0) U\left(\infty, t_{n}\right)$ and also that $U\left(t_{1}, 0\right)=U\left(t_{1},-\infty\right) U(-\infty, 0)$.
1.j Replace H_{0} with $(1-i \epsilon) H_{0}(\epsilon>0, \epsilon \ll 1)$ (notice that this is related to the analytic continuation used in defining the Feynman propagator), and show that $\langle\Omega| U^{\dagger}(\infty, 0)=$ $\langle\Omega \mid 0\rangle\langle 0|$ and that $U(-\infty, 0)|\Omega\rangle=|0\rangle\langle 0 \mid \Omega\rangle$.
1.k Show that

$$
\begin{aligned}
\langle\Omega| \phi\left(x_{n}\right) \ldots \phi\left(x_{1}\right)|\Omega\rangle= & \langle 0| U\left(\infty, t_{n}\right) \phi_{I}\left(x_{n}\right) U\left(t_{n}, t_{n-1}\right) \phi_{I}\left(x_{n-1}\right) \ldots \\
& \ldots U\left(t_{2}, t_{1}\right) \phi_{I}\left(x_{1}\right) U\left(t_{1},-\infty\right)|0\rangle|\langle 0 \mid \Omega\rangle|^{2}
\end{aligned}
$$

1.l Show that

$$
\langle\Omega| T \phi\left(x_{n}\right) \ldots \phi\left(x_{1}\right)|\Omega\rangle=\langle 0| T \phi_{I}\left(x_{n}\right) \ldots \phi_{I}\left(x_{1}\right) e^{-i \int d^{4} x \mathcal{H}_{I}(x)}|0\rangle|\langle 0 \mid \Omega\rangle|^{2}
$$

1.m Show that

$$
|\langle 0 \mid \Omega\rangle|^{2}=\frac{1}{\langle 0| T e^{-i \int d^{4} x \mathcal{H}_{I}(x)}|0\rangle} .
$$

Thus we have

$$
\langle\Omega| T \phi\left(x_{n}\right) \ldots \phi\left(x_{1}\right)|\Omega\rangle=\frac{\langle 0| T \phi_{I}\left(x_{n}\right) \ldots \phi_{I}\left(x_{1}\right) e^{-i \int d^{4} x \mathcal{H}_{I}(x)}|0\rangle}{\langle 0| T e^{-i \int d^{4} x \mathcal{H}_{I}(x)}|0\rangle}
$$

We can now expand the exponential on the right-hand side of the last equation in (1.m), and use the formalism of a free-field theory to compute the resulting correlation functions. This is the core of the perturbative approach to any interacting field theory.
2. The following Feynman diagram:

represents a contribution to $\langle\Omega| T\{\phi(x) \phi(y)\}|\Omega\rangle$. Explain which term of the perturbative expansion of $\langle\Omega| T\{\phi(x) \phi(y)\}|\Omega\rangle$ corresponds to this diagram and write the corresponding analytical contribution both in position space and in momentum space.
3. Consider a real scalar field theory with $\mathcal{H}_{\text {int }}=\frac{\lambda}{4!} \phi^{4}$.
3.a) Derive the tree-level vertex interaction that defines the vertex Feynman rule for this theory in momentum space.
3.b) Given a generic diagram with E external legs, V vertices, and P propagators, what is the relation among E, V, and P for both connected and non-connected diagrams?
3.c) Draw all the fully connected diagrams with $1 \leq E \leq 4$ and $0 \leq V \leq 2$, and find their symmetry factors.
4. Repeat the same exercise for the case of a complex scalar field with $\mathcal{H}_{\text {int }}=\frac{\lambda}{4}\left(\phi^{\dagger} \phi\right)^{2}$. Remember that there are now two kinds of particles (which we can think as positively and negatively charged), and that your rules must have a way to distinguish among them. Hint: it seems like you need two kinds of arrows to represent the flow of momentum and charge separately. Try to find a more elegant approach that only needs one kind of arrows.

