PHY 5667 : Quantum Field Theory A, Fall 2017

October 19^{th} , 2017 Assignment # 4 (due Thursday November 2^{nd} , 2017)

- 1. Consider an interacting scalar field theory with $H_{\text{int}} = \frac{\lambda}{4!}\phi^4$. Sketch the diagrams contributing to the invariant scattering matrix element $\mathcal{M}(p_1, p_2 \to p_3 p_4)$ at $O(\lambda^2)$ and write the corresponding explicit expression in momentum space.
- 2. Consider a theory of three scalar fields (A, B, and C) with interaction $\mathcal{L}_{int} = gABC$. Write down the tree-level scattering amplitude (given by the sum of the contributing tree-level diagrams) for each of the following processes:

 $AA \rightarrow AA$, $AA \rightarrow AB$, $AA \rightarrow BB$, $AA \rightarrow BC$, $AB \rightarrow AB$, $AB \rightarrow AC$.

Express your answer in terms of Mandelstam variables s, t, and u.

- **3.3.a)** Consider a theory with two real scalar fields A and B with an interaction $\mathcal{L}_{int} = gAB^2$. Assuming that $m_A > 2m_B$, compute the total decay rate of the A particle at tree level.
 - **3.b)** Consider a theory of a real scalar field φ and a complex scalar field χ with $\mathcal{L}_{int} = g\varphi\chi^{\dagger}\chi$. Assuming $m_{\varphi} > 2m_{\chi}$, compute the total decay rate of the φ particle at tree level.
- 4. Problem 4.3 of Peskin and Schroeder's book.