PHY 5667 : Quantum Field Theory A, Fall 2017

October 19 ${ }^{\text {th }}, 2017$
Assignment \# 4 (due Thursday November $2^{\text {nd }}$, 2017)

1. Consider an interacting scalar field theory with $H_{\text {int }}=\frac{\lambda}{4!} \phi^{4}$. Sketch the diagrams contributing to the invariant scattering matrix element $\mathcal{M}\left(p_{1}, p_{2} \rightarrow p_{3} p_{4}\right)$ at $O\left(\lambda^{2}\right)$ and write the corresponding explicit expression in momentum space.
2. Consider a theory of three scalar fields $(A, B$, and $C)$ with interaction $\mathcal{L}_{\text {int }}=g A B C$. Write down the tree-level scattering amplitude (given by the sum of the contributing tree-level diagrams) for each of the following processes:

$$
A A \rightarrow A A, A A \rightarrow A B, A A \rightarrow B B, A A \rightarrow B C, A B \rightarrow A B, A B \rightarrow A C .
$$

Express your answer in terms of Mandelstam variables s, t, and u.
3. 3.a) Consider a theory with two real scalar fields A and B with an interaction $\mathcal{L}_{\text {int }}=g A B^{2}$. Assuming that $m_{A}>2 m_{B}$, compute the total decay rate of the A particle at tree level.
3.b) Consider a theory of a real scalar field φ and a complex scalar field χ with $\mathcal{L}_{\text {int }}=g \varphi \chi^{\dagger} \chi$. Assuming $m_{\varphi}>2 m_{\chi}$, compute the total decay rate of the φ particle at tree level.
4. Problem 4.3 of Peskin and Schroeder's book.

