PHY 5667: Quantum Field Theory A, Fall 2017

November 2^{nd} , 2017 Assignment # 5

(due Thursday November 16^{th} , 2017)

- 1. By definition, a representation of SU(2) is a set of $n \times n$ matrices σ_1 , σ_2 , σ_3 that satisfy the algebra $[\sigma_i, \sigma_j] = i\epsilon_{ijk}\sigma_k$. For n = 2 these are the Pauli matrices. In general, you can build any finite dimensional irreducible representation of SU(2) through the following steps that you are asked to complete:
 - **1.a)** In such generic representation, you can diagonalize σ_3 . Its eigenvectors are n complex vectors V_j such that $\sigma_3 V_j = \lambda_j V_j$. Define $\sigma_{\pm} = \sigma_1 \pm i \sigma_2$ and show that $\sigma_+ V_j$ and $\sigma_- V_j$ either vanish or are eigenstates of σ_3 with eigenvalues $(\lambda_j + 1)$ and $(\lambda_j 1)$ respectively.
 - **1.b)** Prove that one and only one eigenstate of σ_3 , V_{max} , must satisfy $\sigma_+V_{\text{max}}=0$. The eigenvalue $\lambda_{\text{max}}=j$ of V_{max} is known as the *spin*. Similarly, prove that there is one and only one eigenvector V_{min} such that $\sigma_-V_{\text{min}}=0$.
 - **1.c)** Since there are a finite number of eigenvectors, $V_{\min} = (\sigma_{-})^{N} V_{\max}$ for some integer N. Prove that N = 2j such that n = 2j + 1.
 - **1.d)** Construct explicitly the n = 5 (five-dimensional) representation of SU(2).
- 2. Let us write the infinitesimal form of a Lorentz transformation in the *vector representation* as

$$\Lambda^{\rho}_{\sigma} = \delta^{\rho}_{\sigma} - \frac{i}{2} \delta \omega_{\mu\nu} (J_V^{\mu\nu})^{\rho}_{\sigma} ,$$

where

$$(J_V^{\mu\nu})^{\rho}_{\sigma} = i \left(g^{\mu\rho} \delta^{\nu}_{\sigma} - g^{\nu\rho} \delta^{\mu}_{\sigma} \right) ,$$

are matrices in the vector representation of the Lorentz generators ($g^{\mu\nu}$ denotes the metric tensor in Minkowski space and δ^{ν}_{μ} is the Kronecker δ in four dimensions).

2.a) Write Λ^{μ}_{ν} for a rotation by an angle θ about the x axis, and show that,

$$\Lambda = \exp\left(-i\theta J_V^{23}\right) .$$

2.b) Write Λ^{μ}_{ν} for a boost by rapidity η in the z direction, and show that,

$$\Lambda = \exp\left(i\eta J_V^{30}\right) .$$

3. Under a Lorentz transformation (Λ) Dirac (and Majorana) fields transform as,

$$\psi'(x) = D(\Lambda)\psi(\Lambda^{-1}x) ,$$

where, denoting by $S^{\mu\nu}$ the generators of Lorentz transformations in the Dirac spinor representation, $D(\Lambda)$ for an infinitesimal transformation can be written as,

$$D(\Lambda) = 1 + \frac{i}{2} \delta \omega_{\mu\nu} S^{\mu\nu} \ .$$

- **3.a)** Find the form of the generators $S^{\mu\nu}$.
- **3.b)** Find in this representation the explicit form of a finite rotation by an angle θ about the z axis.
- **3.c)** Find in this representation the explicit form of a finite boost by rapidity η in the z direction.
- **4.** Consider Weyl spinors $\xi_{L,R}$ and $\psi_{L,R}$, and prove that $\xi_L^{\dagger} \bar{\sigma}^{\mu} \psi_L$ and $\xi_R^{\dagger} \sigma^{\mu} \psi_R$ transform as Lorentz 4-vectors.
- **5.** Problem 3.4 of Peskin and Schroeder's book.