PHY 5667 : Quantum Field Theory A, Fall 2017

November $21^{s t}$, 2017
Assignment \# 6
(due Thursday November $30^{\text {th }}$, 2017)

1. Show that, for spinors $u^{s}(p)$ and $v^{s}(p)$,

$$
\sum_{s=1,2} u^{s}(p) \bar{u}^{s}(p)=\gamma \cdot p+m=p p+m,
$$

and

$$
\sum_{s=1,2} v^{s}(p) \bar{v}^{s}(p)=\gamma \cdot p-m=p p-m .
$$

2. Following the example of the scalar-field (Feynman) propagator that we discussed in detail in class, calculate the Feynman propagator for Dirac spinor fields

$$
S_{F}(x-y) \equiv<0|T \psi(x) \bar{\psi}(y)| 0>,
$$

and show that

$$
S_{F}(x-y)=\int \frac{d^{4} p}{(2 \pi)^{4}} \tilde{S}_{F}(p) e^{-i p(x-y)},
$$

where

$$
\tilde{S}_{F}(p)=\frac{i(p+m)}{p^{2}-m^{2}+i \epsilon},
$$

while the meaning of the $i \epsilon$ term in the denominator should be clear from the discussion of the scalar-field propagator.
3. Consider the two-fermion scattering process:

$$
\text { fermion }(p)+\text { fermion }(k) \rightarrow \text { fermion }\left(p^{\prime}\right)+\text { fermion }\left(k^{\prime}\right)
$$

in the context of the Yukawa theory $\left(\mathcal{L}_{\text {int }}=-g \bar{\psi} \psi \phi\right)$. Calculate the differential cross section $\left(\frac{d \sigma}{d \Omega}\right)_{C M}$ and the total cross section σ at the lowest order in g (a.k.a. tree level).
4. Consider the decay $\phi \rightarrow e^{+}+e^{-}$, where ϕ is a generic particle.
4.a) Show that the total rate for such decay is,

$$
\Gamma\left(\phi \rightarrow e^{+}+e^{-}\right)=\frac{1}{16 \pi M_{\phi}} \sqrt{1-\frac{4 m_{e}^{2}}{M_{\phi}^{2}}}|\mathcal{M}|^{2},
$$

where \mathcal{M} is the corresponding invariant matrix element.
4.b) Evaluate $\Gamma\left(\phi \rightarrow e^{+}+e^{-}\right)$when:
4.b.1) ϕ is a scalar, with interaction $g_{S} \phi \bar{\psi} \psi$;
4.b.2) ϕ is a pseudoscalar, with interaction $i g_{P} \phi \bar{\psi} \gamma_{5} \psi$;
4.b.3) ϕ is a vector, with interaction $g_{V} \phi^{\mu} \bar{\psi} \gamma_{\mu} \psi$;
4.b.4) ϕ is a axial vector, with interaction $i g_{A} \phi^{\mu} \bar{\psi} \gamma_{\mu} \gamma_{5} \psi$.
4.c) Imagine a collider reports evidence of a particle that decays only to leptons (e, μ, τ) whose mass is around 4 GeV . If about 25% of the time it decays into $\tau^{+} \tau^{-}$, what spin and parity might the particle have?

