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September 20th, 2018

Assignment # 3

(due Thursday October 4th, 2018)

1. Consider the theory of a complex scalar field whose Lagrangian density is given by:

L = ∂µφ
∗∂µφ−m2φ∗φ ,

where complex means complex-valued. Notice that φ(x) and φ∗(x) are here considered as
independent dynamical variables (instead of the real and imaginary part of φ(x)).

1.a) Show that φ(x) (and φ∗(x)) satisfies the Klein-Gordon equation.

1.b) Find the conjugate momenta of φ(x) and φ∗(x) and show that the Hamiltonian is:

H =
∫
d3x

(
π∗π +∇φ∗ · ∇φ+m2φ∗φ

)
.

1.c) Define your quantization procedure in term of canonical commutation relations among
the φ(x), φ∗(x), π(x), and π∗(x) operators. Introduce annihilation and creation opera-
tors and calculate their commutation relations. How many kinds of such operators do
you need to introduce? Show that the theory contains two sets of particles of mass m.

1.d) The system admits a conserved charge Q due to the invariance of its action functional
under a U(1) transformation of the fields:

φ(x) → φ′(x) = eiαφ(x) ,

φ∗(x) → (φ∗)′(x) = e−iαφ∗(x) ,

where α is constant. Calculate Q in terms of creation and annihilation operators, and
evaluate the charge of the particles of each type.

2. As a complement to our discussion in class, this problem allows you to review and com-
plement the calculation of out〈0|Tφ(x1) . . . φ(xn)|0〉in for a system of interacting real scalar
fields, using canonical quantization. We have discussed some of its steps in class, and will
use the results in our lesson on Oct. 2nd. It could be beneficial for you to have a look at the
problem before that lesson.

Consider a quantum system of fields with Hamiltonian density H = H0 +H1 where H0 =
1
2
π2 + 1

2
(∇φ)2 + 1

2
m2φ2, and H1 is a function of π(0,x) and φ(0,x) (or equivalently π(t0,x)

and φ(t0,x), for a fixed time t0) and their spatial derivatives. Let us define |0〉in,out to be
the vacuum states of the system before (Ti → −∞) and after (Tf → +∞) the interaction,
corresponding to a system of free fields φin(x) and φout(x) respectively. The Heisenberg-
picture field φ(x) = φ(t, ~x) is

φ(t,x) ≡ eiH(t−t0)φ(t0,x)e−iH(t−t0) ,

while the interaction-representation or interaction-picture field is defined as

φI(t,x) ≡ eiH0(t−t0)φ(t0,x)e−iH0(t−t0) .



2.a Show that φI(x) obeys the Klein-Gordon equation, and hence is a free field.

2.b Show that φ(x) = U †(t, t0)φI(x)U(t, t0), where U(t, t0) = eiH0(t−t0)e−iH(t−t0) is unitary.

2.c Show that U(t, t0) obeys the differential equation i d
dt
U(t, t0) = HI(t)U(t, t0), where

HI(t) = eiH0(t−t0)H1e
−iH0(t−t0) is the interaction Hamiltonian in the interaction repre-

sentation, and the boundary condition is U(t0, t0) = 1.

2.d Show that if the Hamiltonian densityH1 is specified by a particular function of the fields
π(t0,x) and φ(t0,x), show that HI(t) is given by the same function of the interaction-
picture fields πI(t,x) and φI(t,x).

2.e Show that, for t > t0,

U(t) = T exp
[
−i
∫ t

t0
dt′HI(t

′)
]

obeys the differential equation and boundary conditions of part (2.c). What is the
comparable expression for t < t0?

2.f Define U(t2, t1) ≡ U(t2, t0)U
†(t1, t0) and show that for t2 > t1

U(t2, t1) = T exp
[
−i
∫ t2

t1
dt′HI(t

′)
]
.

What is the comparable expression for t2 < t1 ?

2.g For any time ordering show that U(t3, t1) = U(t3, t2)U(t2, t1) and that U †(t1, t2) =
U(t2, t1).

2.h Show that, given a time ordering, e.g. x01 > . . . > x0n, one has:

φ(x1) . . . φ(xn) = U †(t1, t0)φI(x1)U(t1, t2)φI(x2) . . . U(tn−1, tn)φI(xn)U(tn, t0) .

2.i Show that, for any t such that t � t1 > . . . > tn � −t, U †(t1, t0) = U †(t, t0)U(t, t1)
and also that U(tn, t0) = U(tn,−t)U(−t, t0).

2.j Using the previous results, show that, setting t0 = −t and letting t→∞ one gets:

out〈0|φ(x1) . . . φ(xn)|0〉in = out〈0|U †(∞,−∞)U(∞, t1)φI(x1)U(t1, t2)φI(x2) . . .

. . . U(tn−1, tn)φI(xn)U(tn,−∞)|0〉in .

2.k The vacuum states |0 >in and |0 >out are both vacuum states of the free theory,
according to what we assumed at Ti → −∞ to Tf → +∞. Hence the two states are
the same modulus at most a phase since states differing by a phase are equivalent in
quantum mechanics. At the same time, if the vacuum state is stable, the time evolution
from Ti → −∞ to Tf → +∞ should reproduce the same state modulus a phase. We
can than write that:

eiα|0〉 = U(∞,−∞)|0〉 ,

where the distinction between in and out vacuum states is superfluous and can be
dropped. We can than use the previous relation to derive that:

eiα = 〈0|Te−i
∫
d4xHI(x)|0〉 .



2.l Using all previous results show that:

out〈0|Tφ(x1) . . . φ(xn)|0〉in =
〈0|TφI(x1) . . . φI(xn)e−i

∫
d4xHI(x)|0〉

〈0|Te−i
∫
d4xHI(x)|0〉

.

We can now expand the exponential on the right-hand side of the last equation in (1.m),
and use the formalism of a free-field theory to compute the resulting correlation functions.
This is the core of the perturbative approach to any interacting field theory.


