# PHY 5667 : Quantum Field Theory A, Fall 2018 

October $9^{\text {th }}, 2018$
Assignment \# 4
(due Tuesday October $23^{r d}$, 2018)

1. The following Feynman diagram:

represents a contribution to out $\langle 0| T\{\phi(x) \phi(y)\}|0\rangle_{\text {in }}$. Explain which term of the perturbative expansion of ${ }_{\text {out }}\langle 0| T\{\phi(x) \phi(y)\}|0\rangle_{\text {in }}$ corresponds to this diagram and write the corresponding analytical contribution both in position space and in momentum space.
2. Problem 7.1 of Schwartz's book.
3. Consider a real scalar field theory with $\mathcal{H}_{\text {int }}=\frac{\lambda}{4!} \phi^{4}$.
3.a) Derive the tree-level vertex interaction that defines the vertex Feynman rule for this theory in momentum space.
3.b) Given a generic diagram with $E$ external legs, $V$ vertices, and $P$ propagators, what is the relation among $E, V$, and $P$ for both connected and non-connected diagrams?
3.c) Draw all the fully connected diagrams with $1 \leq E \leq 4$ and $0 \leq V \leq 2$, and find their symmetry factors.
4. Repeat the same exercise for the case of a complex scalar field with $\mathcal{H}_{\text {int }}=\frac{\lambda}{4}\left(\phi^{\dagger} \phi\right)^{2}$. Remember that there are now two kinds of particles (which we can think as positively and negatively charged), and that your rules must have a way to distinguish among them. Hint: it seems like you need two kinds of arrows to represent the flow of momentum and charge separately. Try to find a more elegant approach that only needs one kind of arrows.
