PHY 5667 : Quantum Field Theory A, Fall 2018

October $23^{\text {rd }}, 2018$
Assignment \# 5
(due Tuesday November $6^{\text {th }}$, 2018)

1. Problem 10.2 of Schwartz's book.

By definition, a representation of $S U(2)$ is a set of $n \times n$ matrices $\sigma_{1}, \sigma_{2}, \sigma_{3}$ that satisfy the algebra $\left[\sigma_{i}, \sigma_{j}\right]=i \epsilon_{i j k} \sigma_{k}$. For $n=2$ these are the Pauli matrices. In general, you can build any finite dimensional irreducible representation of $S U(2)$ through the following steps that you are asked to complete:
1.a) In such generic representation, you can diagonalize σ_{3}. Its eigenvectors are n complex vectors V_{j} such that $\sigma_{3} V_{j}=\lambda_{j} V_{j}$. Define $\sigma_{ \pm}=\sigma_{1} \pm i \sigma_{2}$ and show that $\sigma_{+} V_{j}$ and $\sigma_{-} V_{j}$ either vanish or are eigenstates of σ_{3} with eigenvalues $\left(\lambda_{j}+1\right)$ and $\left(\lambda_{j}-1\right)$ respectively.
1.b) Prove that one and only one eigenstate of $\sigma_{3}, V_{\max }$, must satisfy $\sigma_{+} V_{\max }=0$. The eigenvalue $\lambda_{\max }=j$ of $V_{\max }$ is known as the spin. Similarly, prove that there is one and only one eigenvector $V_{\min }$ such that $\sigma_{-} V_{\min }=0$.
1.c) Since there are a finite number of eigenvectors, $V_{\min }=\left(\sigma_{-}\right)^{N} V_{\max }$ for some integer N. Prove that $N=2 j$ such that $n=2 j+1$.
1.d) Construct explicitly the $n=5$ (five-dimensional) representation of $S U(2)$.
2. Under a Lorentz transformation (Λ) Dirac (and Majorana) fields transform as,

$$
\psi^{\prime}(x)=D(\Lambda) \psi\left(\Lambda^{-1} x\right)
$$

where, denoting by $S^{\mu \nu}$ the generators of Lorentz transformations in the Dirac spinor representation, $D(\Lambda)$ for an infinitesimal transformation can be written as,

$$
D(\Lambda)=1+\frac{i}{2} \delta \omega_{\mu \nu} S^{\mu \nu}
$$

2.a) Find the form of the generators $S^{\mu \nu}$.
2.b) Find in this representation the explicit form of a finite rotation by an angle θ about the z axis.
2.c) Find in this representation the explicit form of a finite boost by rapidity η in the z direction.
3. Consider Weyl spinors $\xi_{L, R}$ and $\psi_{L, R}$, and prove that $\xi_{L}^{\dagger} \bar{\sigma}^{\mu} \psi_{L}$ and $\xi_{R}^{\dagger} \sigma^{\mu} \psi_{R}$ transform as Lorentz 4-vectors.
4. Extra credit. Problem 4.3 of Peskin and Schroeder's book.

