November
$$6^{th}$$
, 2018
Assignment # 6
(due Thursday November 20^{th} , 2018)

1. Show that, for spinors $u^{s}(p)$ and $v^{s}(p)$,

$$\sum_{s=1,2} u^s(p) \bar{u}^s(p) = \gamma \cdot p + m = \not p + m \quad ,$$

and

$$\sum_{s=1,2} v^s(p)\bar{v}^s(p) = \gamma \cdot p - m = \not p - m$$

2. Following the example of the scalar-field (Feynman) propagator that we discussed in detail in class, calculate the Feynman propagator for Dirac spinor fields

$$S_F(x-y) \equiv <0|T\psi(x)\bar{\psi}(y)|0> ,$$

and show that

$$S_F(x-y) = \int \frac{d^4p}{(2\pi)^4} \tilde{S}_F(p) e^{-ip(x-y)}$$
,

where

$$\tilde{S}_F(p) = \frac{i(\not p + m)}{p^2 - m^2 + i\epsilon} \quad ,$$

while the meaning of the $i\epsilon$ term in the denominator should be clear from the discussion of the scalar-field propagator.

3. Consider the two-fermion scattering process:

$$\operatorname{fermion}(p) + \operatorname{fermion}(k) \to \operatorname{fermion}(p') + \operatorname{fermion}(k')$$

in the context of the Yukawa theory $(\mathcal{L}_{int} = -g\bar{\psi}\psi\phi)$. Calculate the differential cross section $(\frac{d\sigma}{d\Omega})_{CM}$ and the total cross section σ at the lowest order in g (a.k.a. *tree level*).

- 4. Consider the decay $\phi \to e^+ + e^-$, where ϕ is a generic particle.
 - 4.a) Show that the total rate for such decay is,

$$\Gamma(\phi \to e^+ + e^-) = \frac{1}{16\pi M_{\phi}} \sqrt{1 - \frac{4m_e^2}{M_{\phi}^2}} \, |\mathcal{M}|^2 \,,$$

where \mathcal{M} is the corresponding invariant matrix element.

4.b) Evaluate $\Gamma(\phi \rightarrow e^+ + e^-)$ when:

4.b.1) ϕ is a *scalar*, with interaction $g_S \phi \bar{\psi} \psi$;

- **4.b.2)** ϕ is a *pseudoscalar*, with interaction $ig_P\phi\bar{\psi}\gamma_5\psi$;
- **4.b.3)** ϕ is a vector, with interaction $g_V \phi^\mu \bar{\psi} \gamma_\mu \psi$;
- **4.b.4)** ϕ is a *axial vector*, with interaction $ig_A \phi^\mu \bar{\psi} \gamma_\mu \gamma_5 \psi$.
- **4.c)** Imagine a collider reports evidence of a particle that decays only to leptons (e, μ, τ) whose mass is around 4 GeV. If about 25% of the time it decays into $\tau^+\tau^-$, what spin and parity might the particle have?