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1. This is problem 17.2 of Peskin and Schroeder’s book.
In this problem you will learn how to directly probe the spin of the gluon, by comparing the
predictions of QCD with those of a model in which the interaction among quarks is mediated
by a scalar boson. Let the coupling of the scalar gluon (S) to quarks be defined by:

L = gSq̄q ,

and define αg = g2/(4π).

1.a) Compute the tree-level cross section for e+e− → qq̄S as a function of the energies of
the final-state particles, which will be represented as energy fractions xq, xq̄, and xs to
the energy of the incoming electron beam. Show that:
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1.b) In practice it is very difficult to tell quarks from gluons experimentally, since they both
appear as jets of hadrons. It is more convenient to identify the particle (or jet) with
the largest energy fraction (call it xa), the next to the largest energy fraction (call it
xb), and the one with the least energy fraction (call it xc). Consider the distribution
d2σ/dxadxb obtained by summing over the various possibilities. Calculate it for QCD
and well as for the scalar-gluon model, and show that it can be used to distinguish
between the two models.

2. This is problem 17.3 of Peskin and Schroeder’s book.
This problem goes through the calculation of quark-antiquark scattering and gluon-gluon
scattering at the lowest order in QCD, using some simplifications that allow you to calculate
cumbersome expressions in a pretty simple way once you see the structures involved. If
you are interested, you could also read Chapter 27 of Schwartz’s book and learn a totally
different method to reduce this calculation even further. Both methods lend themselves
well to a symbolic implementation in any algebraic manipulator. If you use an algebraic
manipulator, you can also ignore all simplifications and let the code process the extra terms
that will be generated. It is up to you which way you want to take.

2.a) Compute the differential cross section:

dσ
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at the lowest order in QCD and ignoring quark masses. This is most easily done by
computing the amplitudes between states of definite quark and gluon helicity, and using
explicit polarization vectors and spinors. For instance, you can use

εµ =
1√
2

(0, 1, i, 0) ,

for a right-handed gluon moving in the positive ẑ direction. Consider only transversely
polarized gluons, and notice that only the qLq̄R and qRq̄L initial states give a non-zero
contribution, and, since QCD respect parity (P ), they give identical contributions to
the total cross section. In summary, you only have to calculate:

qLq̄R → gLgL ,

qLq̄R → gLgR ,

qLq̄R → gRgR .

After computing these amplitudes, square them and combine them properly with color
factors to obtain the various helicity cross sections. The total cross section will be
obtained by summing all of them and averaging over initial colors and spins.

2.b) Compute the differential cross section:

dσ

dt
(gg → gg) ,

at the lowest order in QCD. There are 16 possible helicity amplitudes, but many of
them are related to each other by parity and crossing symmetry. All 16 can be built
out of the following three amplitudes:

gRgR → gRgR ,

gRgR → gRgL ,

gRgR → gLgL .

Combine these to compute the the spin- and color-averaged differential cross section.


