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DIMENSIONAL REGULARIZATION OF INFRARED DIVERGENCES
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An analysis of the application of dimensional regularization to infrared divergences
in lowest order radiative corrections is presented. The main emphasis of the paper is
to show explicitly how dimensional regularization can lead in some cases of consider-
able interest to very simple and elegant evaluations of infrared divergent contributions
and their associated finite parts, and to pinpoint the mathematical reason for the equi-
valence with the traditional method of regularization.

1. Introduction

Calculations of radiative corrections in quantum electrodynamics are plagued
by the well known infrared divergence problem. Conventionally, one overcomes
this difficulty by regularizing the infrared divergences at the S-matrix level by
giving the photon an infinitesimal mass Amin [1,2]. Such divergences arise in both
virtual photonic corrections and real bremsstrahlung processes. Fortunately, when
the contributions from these two sources are summed to give the total corrections
to transition rates, the infrared divergences cancel to any given order in perturba-
tion theory, and the regularization parameter may be set equal to zero. This im-
portant result has been known, of course, for a long time [2]. A clear and relatively
recent discussion of this cancellation can be found in refs. [1] and [3]. The authors |
of these papers showed that the infrared divergences could be separated from the
rest of the perturbation expansion as an exponential factor. They inferred from the :
simple form of their exponential expression that the cancellation of lowest order
infrared divergences guarantees the cancellation to all orders and that the equi-
valence of any two infrared regularization schemes in lowest order implies equi-
valence to all orders.

In this paper we make no attempt to reproduce the infrared theory [1-3] nor
explore the technique of coherent states which leads to an infrared finite S-matrix [4].
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Qur main interest is to examine the use of dimensional regularization in lowest
order radiative corrections as a substitute scheme for Amin- Such a possibility was
mentioned by the originators of dimensional regularization [5, 6] and later deriion-
strated in some detail for the case of electron scattering by Gastmans and Meulder-
mans [7]. The thrust of our work, on the other hand, is two-fold: to show expli-
citly how dimensional regularization can lead in some cases of considerable interest
to very simple and elegant evaluations of infrared divergent contributions and their
associated finite parts and to pinpoint the mathematical reason for the equivalence
with the A,;, method. N

Sect. 2 of this paper outlines how dimensional regularization may be used to
control infrared divergences which arise in virtual calculations at the one loop level.
The application of this method is demonstrated by a simple example, the field re-
normalization of an electron in quantum electrodynamics. In sect. 3 we discuss the
application of dimensional regularization for real bremsstrahlung calculations and
show the simplicity of its use in two representative decay processes, namely the cor-
rections to muon and m,, decays associated with soft real photons. In sect. 4 we
demonstrate the reason for the equivalence of the dimensional and Amnin techniques.
Since radiative corrections in pure quantum electrodynamics and muon decay using
the A ;. prescription have been well verified by experiment, we naturally view such
equivalence as a necessary criterion for any valid regularization scheme.

2. Virtual corrections

Although the method of dimensional regularization was originally proposed as
a powerful gauge invariant prescription for controlling ultraviolet divergences [5, 6],
it can at the same time regularize the infrared divergences that arise in virtual pho-
tonic graphs. That is, rather than giving the photon a small mass M nin» the dimension
of space-time, n, can serve as a regularization parameter for both ultraviolet and
infrared divergences [7]. At the one loop level both appear as simple poles at n = 4.
In performing the one loop momentum integration, the ultraviolet divergences
emerge immediately; but the infrared divergences appear only after the Feynman
parameter integrations are performed. The ultraviolet poles are removed by renor-
malizing the parameters of the theory; but the infrared poles remain until cancelled
at the transition rate level by soft bremsstrahlung contributions. Throughout this
paper, we will only concern ourselves with the application of the dimensional pre-
scription to infrared divergences.

In the original dimensional regularization prescription, all internal momentum
variables of integration have n rather than 4 components; while the external mo-

menta p; are left as four vectors. At the one loop level, Feynman integrals take the
form

d"K
.\.Nmﬂﬁl %JDS.. K). (2.1)
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Various rules for manipulating this dimensionally generalized integrand and carrying
out the integration are given in [5, 6, 8]. Because this integral is completely regu-
lated by the dimension of space-time, n, we may use the massless photon propagator

) g
:v.ﬁ_\ = |HN e , AN.MV
where
- 2 2 g2
K2 |Nm K_ - Nm K‘TH g (2.3)

whenever a virtual photon line appears. Any infrared divergence originates from a
Feynman parameter integral and takes the form
1
%%:ﬂzu . I n>4, (2.4)
2 n -4
which when analytically continued to all # develops a simple pole at n = 4. Overall,
this method yields the same results as the Amin 3PProach with the replacement

In 7:.:: s ABIIHJH + n.v ’ Awmv

where the constant ¢ accompanies the pole whenever it appears and is later cancelled
along with the pole. The actual value of ¢ depends on the details of our generaliza-
tion to n dimensions and may be changed

c*ctiney (2.6)

merely by multiplying all dimensionally generalized integrals by n.mTa. Therefore,
¢ may be taken to be zero if we wish. (See eq. (2.14) for our value of c.)

As a simple example of this technique, consider the electron self-energy ampli-
tude

d"K 1 1

™ ¥y = - 2.7
@myt T P-K-m, g2

Manipulating the integrand in # dimensional space-time, this becomes

d"K AN JBVAQ ‘\B+E§m

Z(p) = --ie2

Z(p) = —ie? ; g (2.8)
(p) = e .\Am:v: Qmufuu.h,+uul.ﬂwﬁm
or substituting Q@ =K - px
1 ng 2-nmp(l —x)+nm
E(p) = —ie? .\. dx ik 5 5 £ . 2.9)
a @y Q-0
where C = p2(x2 x)+ Smk.
Expanding about jf = Mg,
LM =A+BF m)+ E(p)p mg)? . (2.10)
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The constant B8 =1 — (1/Z3) (2, is the field renormalization), is both ultraviolet
and infrared divergent, We find from eq.(2.9)

1
o d"Q (2 -n)(1 - x)
B ie m_\. dx .\.ﬁa%_ au o Smxmﬁ
1 2
. &:Q A.ﬁakm— s..xv
:%m?a @y (@2 - mazzyy (70— 4n]. 10

We recall [5, 6] that n dimensional Integrals independent of direction are defined
by performing the angular integrations in @ Space, carrying out the radial integra-
tion in its region of convergence in n-space and analytically continuing the results
to the complex n plane. With this definition we find

- £? n— ; n—
mlaﬁm aﬂﬁm[wi oﬁmm\ik 41 - x)dx
1
+@—n) [ xm=51 - x)[2-n)@1 —x)+n]dx) . (2.12)
0

The first and second integrals in eq. (2.1 2) are convergent for n > 3 and 5 > 4,
respectively. Again we define their value for arbitrary nn by carrying out the inte-
grals in their region of convergence in n-space and analytically continuing to the
complex 7 plane. With this definition it is immediately seen that the second term
ineq. (2.12) involves a pole at n = 4 which manifests itself only after the paramet-
ric integration is performed. That this pole is connected with the infrared divergence
can be readily ascertained by observing that the second integral in eq. (2.11), from
which this contribution derives, is obviously ultraviolet convergent at # = 4. Peyr-
forming the x integration and expanding in a Laurent series about n = 4 we find:

mm N
o= 162 Aa — t 7 —In(4m) + 2In(m,) — 4

+ A M_ 3 + 2y — 2In(4n) +£:m3nvv+ O(n-4)}, (2.13)

where 1 is Euler’s constant. The 5 = 4 poles in the first and second parentheses cor-
respond to the ultraviolet and infrared divergences, respectively. This result is iden-
tical to the old calculations involving Amin if the replacement of eq. (2.5) is made
in the second parenthesis of eq.(2.13) and *

=37 —In(2y/m). 2.14)

* On the other hand, the connection of the n = 4 pole in the first parenthesis of eq. (2.13) and
the ultraviolet cutoff A introduced in the usual way, i.e. :ku - :wu - __._cau - >uv is,

1
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The simplicity of this calculation is characteristic of the applications of dimensional
regularization. Radiative corrections of order a associated with proper vertex graphs
are treated in exactly the same straightforward manner.

In closing this section we point out that one loop integrals that are both ultra-
violet and infrared divergent such as B naturally divide into sums of integrals whose
regions of convergence in # space are disjoint. The reason for this is easy to under-
stand: integrals which are logarithmically divergent in the ultraviolet (infrared) but
covergent in the infrared (ultraviolet) have a region of convergence n < 4 (n > d).
Thus, for example, examination of eqgs. (2.1 1) and (2.12) shows that the regions of
convergence of the first and second integrals in eq. (2.12) are 3<n <4 and
4 <n < 6, respectively. Thus, although the complete integral does not converge
for any value of n, the integrand naturally divides into ultraviolet divergent, con-
vergent and infrared divergent parts. Then each part may be treated separately and
for each, there is some dofnain of # in which it exists and from which it may be
continued analytically in the complex n plane,

3. Real photons

In this section we illustrate the application of the n dimensional method to the
study of the soft photon contributions associated with two representative decay
processes, e+ v, + v, +yand m> €+, +y (2= e or ). As we will see, energy
and momentum conservation impose different constraints on the energy-angle de-
pendence of the soft photons associated with these two processes,

The prescription for the dimensional regularization of the bremsstrahlung inte-
grations has been already spelled out by Gastmans and Meuldermans [7] and is
very straightforward:

3 n- g
&k _dm IR “ G.1)
2kg(2my®  2IK|(2mY' !
where K = (K0, K) is an # dimensional light-like vector:
1
KO=IKI=(K}+K3+ ..+ K2 )7 . . (3.2)

Before discussing these processes in detail we make some elementary remarks
which suggest two possible strategies in carrying out the generalized integration. In
the rest frame of the decaying particle, the integrand of the soft photon contribu-
tions to these decays involves the scalar product p5 - K where P4 is the four-momen-
tum of the charged particle in the final state. Because Py is a four vector: py- K =
Py k, where k is the four-vector involving only the first four components of X,
Therefore, we have a choice of two different approaches in introducing polar coor-
dinates, either

Py K =IKIEy — 1p,y| cos 8) 3.3)
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or
Py K=py-k=[KIE;—|p,likl cos @', (34)

where [k| = Tﬂw + kw + NWV w Clearly @ is the angle between P, and K, while 8’ is
the angle between P, and the projection k of X in the subspace corresponding to
the three physical space dimensions, Both procedures are of course equivalent but
we have found that the first, eq. (3.3), introduces considerable simplifications. The
second method based on eq. (3.4) yields integrations similar to the Amin technique
(see sect. 4) and is therefore of no great computational advantage but it is useful

in understanding the equivalence with the traditional calculations,

3.1. Muon decay

In studying the radiative corrections of order a to muon decay it is necessary to
include the inner bremsstrahlung contribution y — e + P + v, + 7. For our purposes
it will be sufficient to consider only the soft photon contributions.

In computing the decay rate, the delta function of energy-momentum conserva-
tion is used to integrate over the phase space of the unobserved neutrinos,

The infrared divergent integral becomes then:

Sk (P P \(PE M
re—{ g - : : 3.5)
R 2kg(2m)3 \P2 PLkj\py k pik
The region of integration R is determined by énergy-momentum conservation, which
implies that the maximum photon energy is a function of cos 9:
ko) B m (£, —E4)
0/max — m, = m.u

TP 6650 ZE, —Fy, (3.6)
where £, = Qz.m + vakuinv is the end point energy of the electron. Note that
except for the point Ey=E,,, itis always possible to divide the region of integration
into two intervals 0 < [k| < e and e < kel < 1Ky, With € isotropic, i.e., independer
of cos 8. In discussing the infrared divergence it is sufficient to consider the first
region. We will refer to the isotropic soft photon integral as /€)_In the traditional
treatment the divergent integral 7 (¢) is given a meaning by assigning to the photon

i G i i .
an infinitesimal mass: k, = (k2 + A2. )2.In the n dimensional approach the reg-

ularized integral is defined as
@=_ [4"VK (Pu Py PE
n -1 K p; K K p, K/ G2
. @Y1 21K1\P2 P P Py

where # is the regularization parameter and the symbol € reminds us that IK1 is con-

strained to lie in the € region: 0 <Kj =Kl <e.In the muon rest frame eq. (3.7)
reduces to

1= &K sin2g
i @y =12iK13 (1 —Bcos )2

(3.8)
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where B = | p,|/E, and we have used eq. (3.3). Choosing the first axis along the
direction of p,, 8 is identified with the polar angle 8 (see appendix). We can then
integrate over the remaining angles and obtain:

c o !
2 g % dIK| K-35 %1 axﬁ|\xwv~;|~ . (39
(162" TGn—1) § >3 (1 - px)? ]

Performing the |K| integration in the region of convergence in n space and analy-

(€ =

n

tically continuing the result we see that the infrared divergence has factored out i
and manifests itself as a pole at n = 4: ; P
4 n—4 E
[ aikiikin-5 = < (3.10)
5 n-4

Inserting eq. (3.10) into eq. (3.9) and performing a Laurent expansion about n = 4:

+1 2
et %T 2 7t in@+iy—In s,\i% PP Lk
=1

82 (1 — fx)2
+1
1 (1 -x2)
t—=F [ dx X" In(1—x2)+0(m_4). (3.11) g
= h ih oLt i ,
Finally evaluation of the integrals leads to '
1 1 1 _
18 g MT —z tIn(e)+3y—In sz\i? tanh~18 — L
+C@+0(n - 4)) (3.12a)
| ;
cpy=1 +:5w B [1 —tanh=18] +2 In Mm tanh—1g — _v i
A
| 28
+g _‘.A_|+mv. (3.12b)

where L(x) = [ (dt/) In|1 — ¢] is the Spence function. . .
Detailed comparison shows that eq. (3.12) is identical to the conventional !
Amin calculation * [9] provided that the identification of egs. (2.5, 2.14) is made,
Thus with our definitions the correspondence between 1/(n — 4) and In (A
given in egs. (2.5, 2.14) is the same for the virtual and real contributions.
It is amusing to note that the finite function C(B) accompanying the infrared
divergent term arises from the second integral in eq. (3.11) and, therefore, has its
mathematical origin in the n dependence of the polar angle integrand in eq. (3.9)!
* To verify the equality of eq. (3.12b) with eq. (C.4) of ref. [9] it is convenient to use the

identity: 2L(g) — 2L(-g) + L{(1 - B)/2) — L((1 + £)/2) = 2L(26/(1 +8)) —
In ((1+5)/2) In (1 + 55/ - p)).

n::v

. ——
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3.2, my, decay

In studying the radiative corrections of order & to the decay m >+, (R=eor 1)
it is necessary to consider the contribution of the real photon process  —+ £ + 7, + 7.
We are interested in the situation in which the Vo and 7y are undetected and the
charged lepton is observed in the energy interval £, — AE<E<FE,, where
E, = oﬁw + SWV\@SL is the energy of the lepton in the two-body decay and
AE < E,,. We will retain terms of logarithmic and zeroth order in A but will
neglect terms of order AE or higher. As only soft photons contribute in this limit,
the effects of the strong interactions in the contributions from = - ¢ + Py + 7 can
be neglected.

With the usual Apin regularization method the differential decay rate in the 7
rest frame is given by:

G 1 d?
- 2£2,29°P 90 2
dP 373 ecf: m 55 P (m_FE my)

a3k (1-— :Su\wmu c0s26)
2kg(2m)® (kg - plkicos 6)2

X

5(G2), (3.13)
where kw =|k|2+ ywzm:. G,=G,cosf and f, are the weak vector and pion decay coup-
ling constants, £ = (E, p) is the charged lepton four-momentum and G = Pr— Rk
In eq. (3.13) we have integrated over the unobserved neutrino phase space, summed
over polarizations and discarded terms of order AE and higher.

In the dimensional regularization method we set Amin = 0 from the beginning
but generalize the integral to n — I dimensions according to eq. (3.1). Thus

G | a3
P e f2m} L m,E - md)p2
n—1g j 2
Xu\, d ( cos=f) mﬁQmV. (3.14)

2Ky 1 (1 — 8 cos 8)2
where we have used eq. (3.3)and B =p/E. Choosing again the first axis along the
direction of p the integrand depends only on the angle 'y =8 so that we can im-
mediately perform the other angular integrations. Further using the §(G2) to carry

out the radial d|K/| integration, we obtain for the probability of emitting € in the
interval E,,, — AESEXE,:

G2e? f2 2 Em m.E -m2
ARE>Ey —8E)=—— 1 2 [ g py-spge Tt M
n(16124"Dhn— 1) £, _ak m?
+1 Lo 4-n
(1 -x2z-1 A E v
X [ dx - (1-8x : 3.15
h (1 —gx)? my ( ) B4
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Expanding everything to the right of (£, — F)"~5 in a Taylor series about £ = E L ax
and changing variables tou =F,, - £
2,242 .2 AE
e m
Gve fame % duu5{A+Bu+Cu? .},

_ (3.16)
a(16n2ya" I(zn — 1)m2 0

INE

It is easy to see that in the limit n = 4 the terms Bu + Cu? + ... contribute finite in-
tegrals of order AE and higher. Therefore we neglect them and obtain

2,22 .2 il
o e Gy e fnmy (AEY 24, (3.172)
i n
n(16m2)a " I'en - :.‘:m
1--u? et 352 ! (1-x?) {1-x W:IH (3.17b)
A= A \|v m3 g dx -t A v s :
2 m h (1 — B, x)? 1 +x

where u = (my/m 4} and B, = (1 — p2)/(1 + u2). Expanding eq. Am.r:v in a
Laurent series about 7 = 4 and performing the ensuing elementary integrals we
finally obtain

2a 1 1 1 —p? 1
AP=—Pol——F+InAE+37y - In(2/m) —In |——)+ Lin p
7 Nn-2 2 2
Lru? (! - 3.18
XM In(_)-1)+0(n-4), (3.18)
1 - 2 H
where
2
v .
Py =g Iy m} m (1 - p2)? (3.19)

is the uncorrected decay rate for 7 > £ + i, }

Again with the identification of egs. (2.5, 2.14) we recover the results of the
traditional A ;. calculations [10], which are of considerable interest for the verifi-
cation of e — i universality. The same basic calculation holds for the decay of the
intermediate W boson [11]W — Q + v, + 7y, where a correct calculation of the finite
parts of eq. (3.18) is important to verify the theorem on mass singularities [9, 12].

We have illustrated these two examples in considerable detail to show the sim-
plicity and elegance of the n dimensional regularization of infrared divergences. )
However, it is not particularly transparent why the traditional and the new regulari-
zation schemes give the same finite answers. We address ourselves to this question
in sect. 4.

X
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4. Equivalence of the dimensional and X in Schemes

In this section we demonstrate the reason for the equivalence of the A, and
dimensional regularization schemes by exploiting a strong similarity between these
two approaches.

In the A, prescription k2 is always replaced by

2 -
k2>k2 -2, enp-&;mawwlw@. (4.1)
while in the dimensional generalization it is replaced by
k2> K2=k2 2 (W2=KZ+KZ+..+K2_ ). (4.2)

This points out the close connection between the photon mass A, and the magni-
tude of the extra components of . In fact, the introduction of the extra compo-
nents, the integration over these variables and the further limit n = 4 look very
much like giving the photon a mass w and then in some sense applying to such ex-
pression an operator that picks up only the very low w dependence of the finite
parts. We illustrate this in the following examples.

4.1. Virtual graphs

We return to the example of sect. 2 and consider the infrared divergent part of
eq. (2.11). It can be written as:
n—4 1 4
m:;u.\. ’ Sh.mu%ax -~
@ay—4 " (2m* (g2 - w? - m2x2)3
where we have separated the integration over the additional n — 4 spatial variables

and replaced 02 =42 _ ;2 Performing the d*q and angular integrations of d7-4¢,
we have

mﬂmx

, (4.3)

Ay 2
2(16n2)!~3n 2 1 2m3x
Bing = ﬁ_ ) .\, dew -5 | 267 %ak £ . (4.4)
FGn-2) ¢ 16n? ¢ m2x2 + 52

The bracketed expression in eq. (4.4) would produce exactly the usual Ain result
if we replaced ¢ Amin- To analyze the effect of the operator

(201672)1~57/T(kn - 2)] [ deo -5,
0

we note that the factor 1/C(3n - 2) contains a zero at n = 4, and that therefore
only terms containing poles at n = 4 after the ¢ integration is performed can con-
tribute. This suggests dividing the integration over w into two intervals which may
be conveniently taken tobe 0 < ¢ < Mg and m, < w < oo, The « integration in
the second interval is perfectly finite as n - 4 and thus its contribution vanishes
atn =4 when multiplied by 1/TGn - 2). To study the effect of the first region of
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or in terms of x = cos 8

Ma.mﬂ.aum ) 1, 2
—=—— [dKI [ dxIKI-2(1 - 22272, (A.6)
rGn - 1) S
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The differential cross sections for elastic graviton-scalar, graviton-photon, and graviton-
graviton scattering are calculated in lowest order. It is found that they have a maximal
growth with energy allowed on dimensional grounds, i.e,, like E2 1tis argued that this
behavior does not exclude the renormalizability of the theory.

1. Introduction

Quantum gravity has a peculiar place in elementary particle physics. On the one
hand, it is important to investigate the theory as it describes how gravity couples
to the elementary particles, and this has to do with some of the most fundamental
aspects of nature. On the other hand, the almost incredible smallness of the coupling
constant makes a detailed study of the effects due to gravity on elementary particle
processes rather academic. These two opposing aspects of the theory make most
physicists quite hesitant to examine it more deeply.

Our point of view has been that as long as no satisfactory, renormalizable theory
has been formulated describing the interaction of the quantized gravitational field
and the matter fields, one is left with the embarassing question of what one is really
missing or overlooking. Exactly this missing piece of knowledge could prove to be
very valuable for the understanding of the other, experimentally more accessible
fundamental interactions. This is really the justification of the work we present
here.

More specifically, we wanted to get a hint about which set of elementary particles
could be coupled in a meaningful way to the graviton. In this context, we have al-
ready shown that quantum gravity corrections to the anomalous magnetic moment
of the electron and the muon are finite at the one-loop level [1]. This time, how-
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