


# Global fits of the SM and beyond

Constraining new physics via improved global fits of the  
Standard Model Effective Field Theory

Laura Reina  
(Florida State University)



Based on work in collaboration with: J. de Blas, A. Goncalves, V. Miralles, M. Pierini,  
L. Silvestrini, M. Valli, and members of the **HEPfit** collaboration.

# Global fits of precision measurements

- The **symmetry structure** of the Standard Model defines **specific relations** among couplings and masses.
- The **renormalizability** of the theory assures that tree-level relations are modified by **finite calculable corrections**.
- **Precision measurements** of masses and couplings via multiple observables:
  - Test the consistency of the theory at the quantum level
  - Indirectly probe new physics via virtual effects

A comprehensive program of precision physics (EW, top, Higgs, flavor, ...) can be a very powerful tool to explore physics beyond the Standard Model

# EW Global fit: general framework

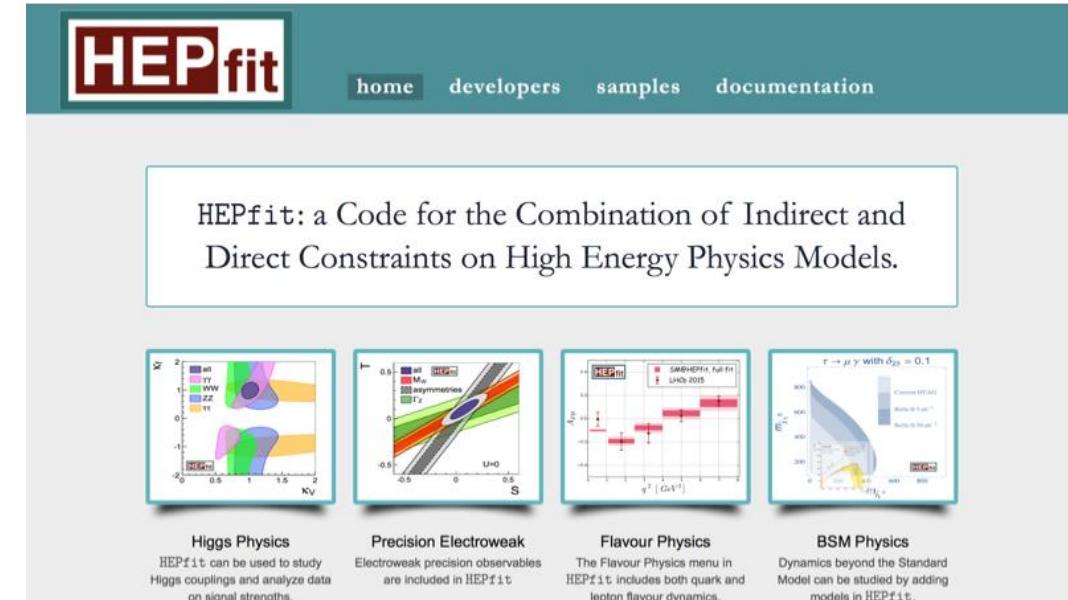
- Set of **input parameters** ( $\alpha$  or  $M_W$  scheme):
  - Fixed:  $G_F$ ,  $\alpha$
  - Floating:  $M_W$ ,  $M_Z$ ,  $M_H$ ,  $m_t$ ,  $\alpha_s(M_Z)$ ,  $\Delta\alpha_{\text{had}}^{(5)}$
- **Compute EW Precision Observables (EWPO)**, including all known higher-order SM corrections:
  - Z-pole observables (LEP/SLD):  $\Gamma_Z$ ,  $\sin^2\theta_{\text{eff}}$ ,  $A_L$ ,  $A_{\text{FB}}$ , ...
  - W observables (LEP II, Tevatron, LHC):  $M_W$ ,  $\Gamma_W$
  - $m_t$ ,  $M_H$ ,  $\sin^2\theta_{\text{eff}}$  (Tevatron/LHC)
- Perform **best fit to EW precision data** through different fitting procedures and compare with experimental measurements.
- Parametrize **new physics** effects on EWPO (tree-level) and **constrain deviations** in terms of chosen parameters:
  - Oblique parameters :  $S, T, U$
  - **Effective interactions: SMEFT**
  - ....



See talk by Ayres Freitas

# Framework we used

Open-source tool


Statistical framework based on a Bayesian MCMC analysis as implemented in **BAT** (Bayesian Analysis Toolkit)  
Caldwell et al., arXiv:0808.2552

Supports SM (fully implemented) and BSM models, in particular the dim-6 SMEFT

Used for several global fit and future collider projections

New release will include EW, Higgs, top, and flavor observables in the SM and the SMEFT with

- SM predictions at NLO or higher
- SMEFT at tree level (dim-6 operators only)
- RGE running of the SMEFT Wilson coefficients
- Linear and quadratic effects from dim-6 operators



<http://hepfit.roma1.infn.it>

J. De Blas et al., 1910.14012

Other existing frameworks for SMEFT global fits:

**SMEFiT**, Celada et al. 2105.00006, 2302.06660, 2404.12809

**Fitmaker**, Ellis et al. 2012.02779

Allwicher et al, 2311.00020

Cirigliano et al. 2311.00021

Bartocci et al. 2311.04963

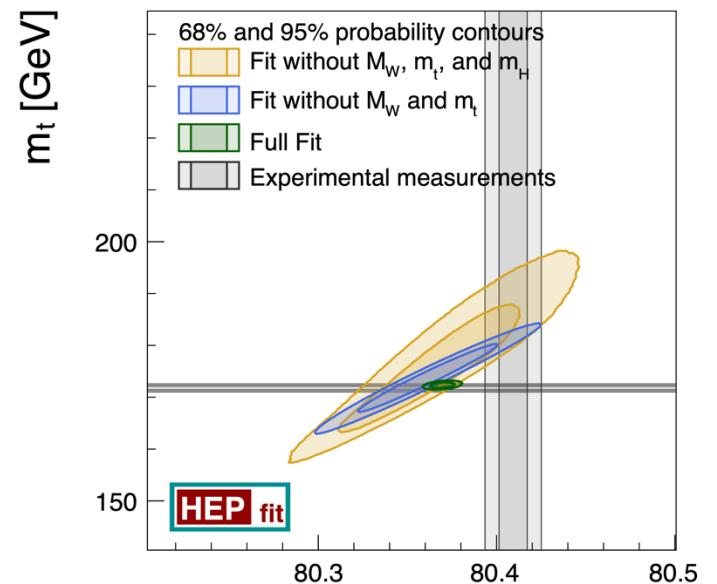
# EW global fit of the SM - excerpt

For  $M_W$  we combine:

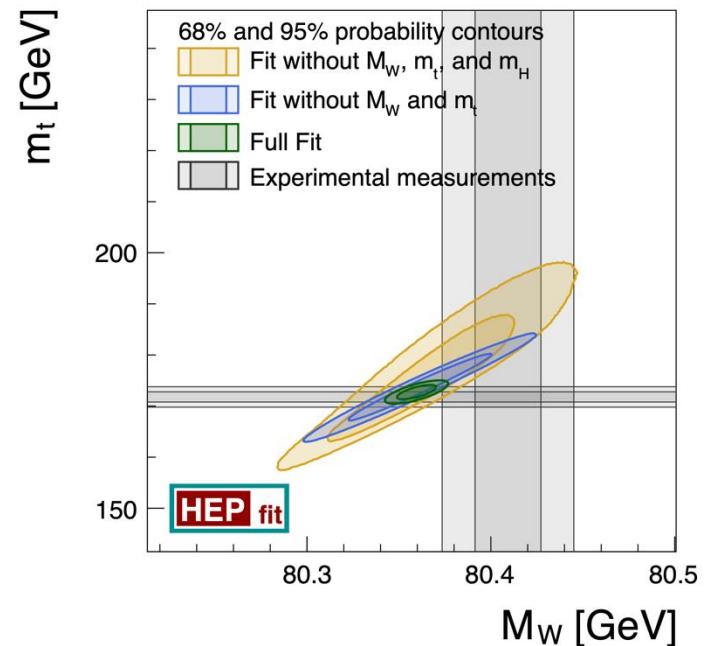
- All LEP 2 measurements;
- Previous Tevatron average
- ATLAS and LHCb measurements
- CDF measurement [ $M_W = (80.4335 \pm 0.0094) \text{ GeV}$ ]
- ATLAS measurement [ $M_W = (80.360 \pm 0.016) \text{ GeV}$ ]

J. de Blas et al. 2112.07274,  
2204. 04204, plus updates

$M_W = 80.409 \pm 0.008 \text{ GeV}$  (**standard**, with CDF)  
 $M_W = 80.360 \pm 0.012 \text{ GeV}$  (**standard**, without CDF)


For  $m_t$  we combine:

- 2016 Tevatron combination
- ATLAS Run 1 and Run2 results
- CMS Run 1 and Run 2 results
- Recent CMS I+j measurement [ $m_t = (171.77 \pm 0.38) \text{ GeV}$ ]


$m_t = 172.61 \pm 0.58 \text{ GeV}$  (**standard**)

Due to tension between LEP, Tevatron, and LHC measurements consider also a **conservative** error of  $\delta M_W = 18 \text{ MeV}$  and  $\delta m_t = 1 \text{ GeV}$  (à la PDG)

**“standard”**  
( $6.1 \sigma$  pull)



**“conservative”**  
( $3.0 \sigma$  pull)



# Beyond EW fits: adding Higgs, top, DY, di-boson, flavor

Constraining new physics through the spectrum of LHC measurements and beyond

- **Higgs boson observables**

- Signal strengths.
- Simplified Template Cross Sections (STXS)

See talk by Matthew Klein

$$\mu_{ij} = \frac{\sigma_i \times Br_j}{(\sigma_i \times Br_j)_{SM}}$$



Preliminary results in this talk

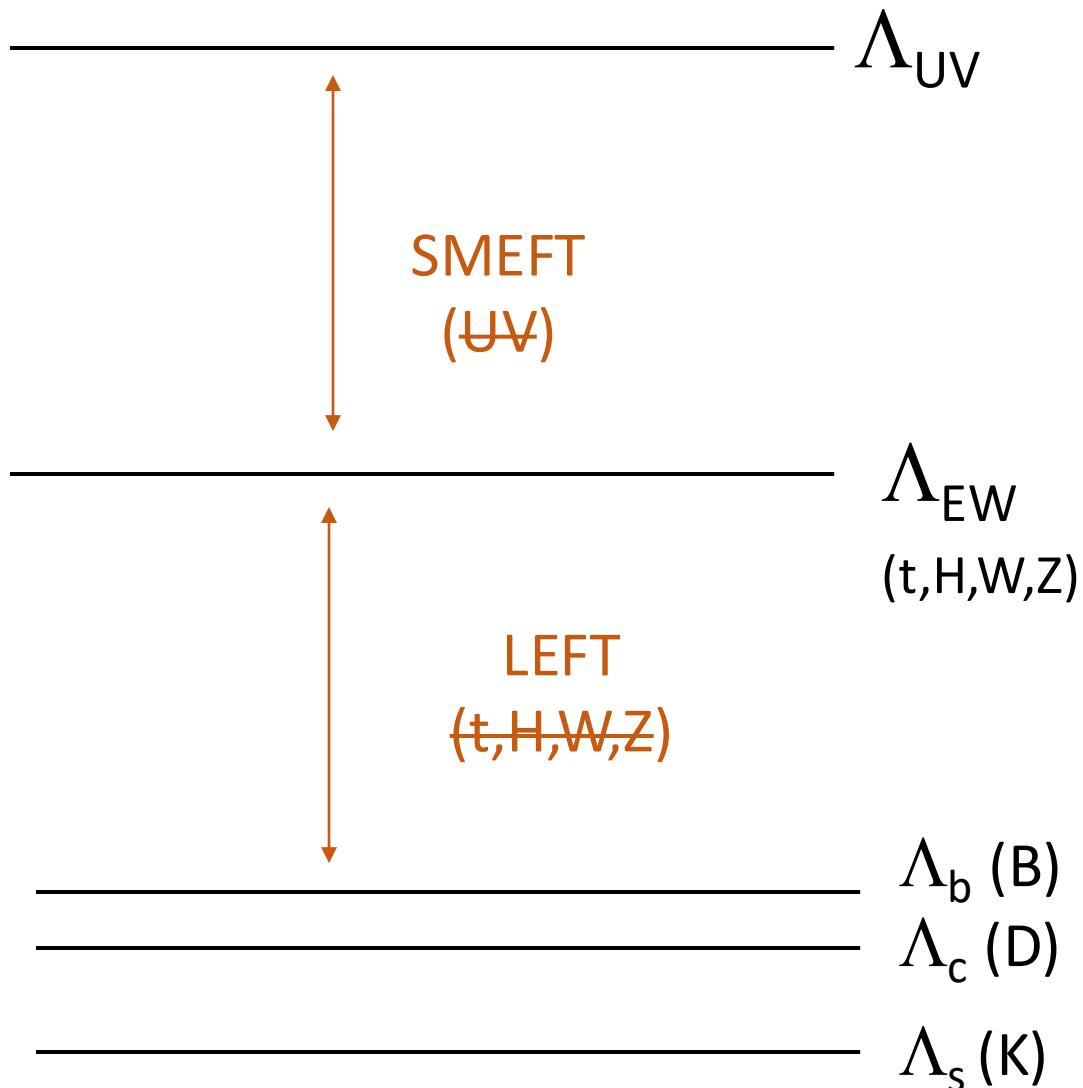
- **Top quark observables**

- $pp \rightarrow t\bar{t}, t\bar{t}Z, t\bar{t}W, t\bar{t}\gamma, tZq, t\gamma q, tW, \dots$

- **Drell-Yan, Di-boson measurements**

- $pp \rightarrow W, Z \rightarrow f_i \bar{f}_j$
- $pp \rightarrow WZ, WW, ZZ, Z\gamma$




Still being tested

- **Flavor observables**

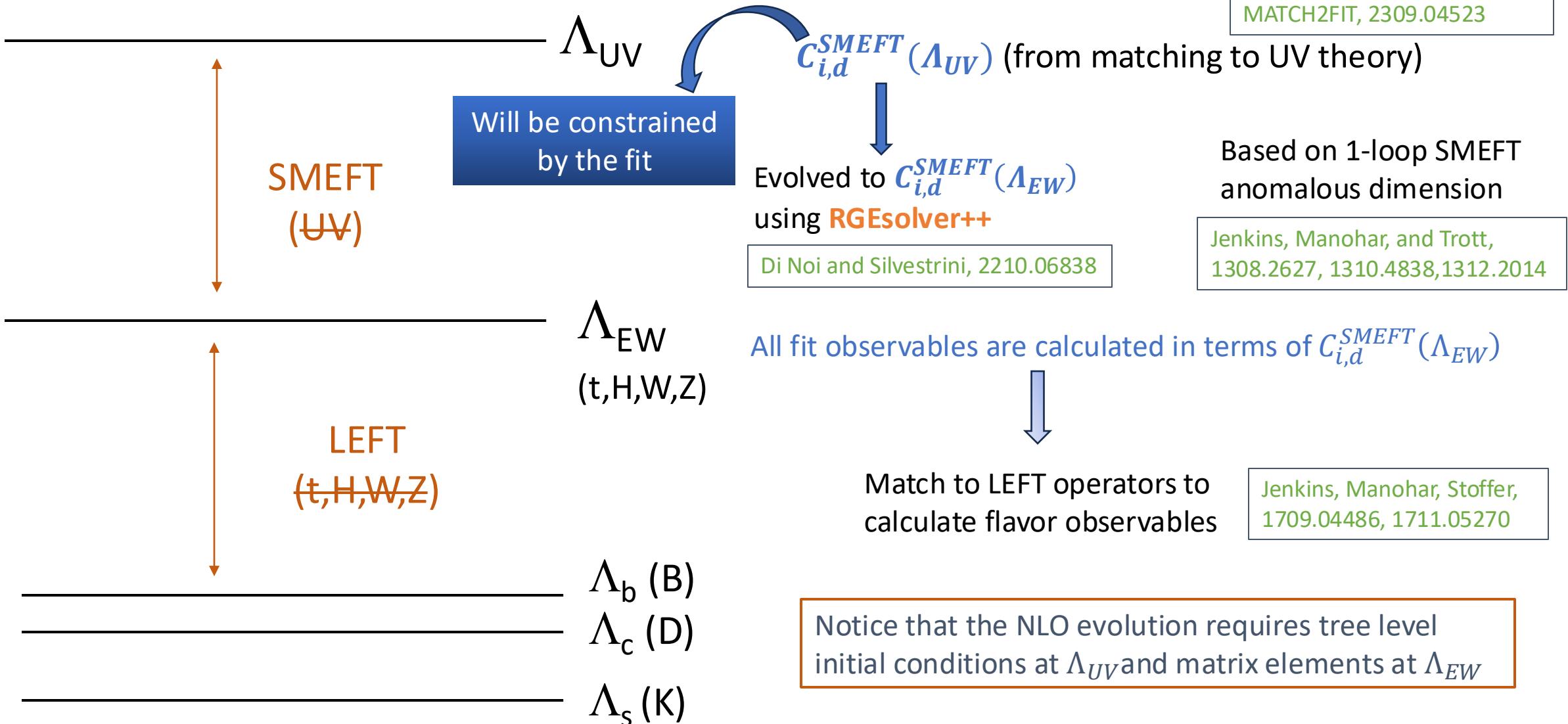
- $\Delta F=2$ :  $\Delta MB_{d,s}, D^0 - \bar{D}^0, \varepsilon_K$
- Leptonic decays:  $B_{d,s} \rightarrow \mu^+ \mu^-, B \rightarrow \tau \nu, D \rightarrow \tau \nu, K \rightarrow \mu \nu, \pi \rightarrow \mu \nu$
- Semi-leptonic decays:  $B \rightarrow D^{(*)} l \nu, K \rightarrow \pi l \nu \bar{\nu}, B \rightarrow K l \nu \bar{\nu}, B, K \rightarrow \pi l \nu$
- Radiative B decays ( $B \rightarrow X_{s,d} \gamma$ )

# Beyond EW fits – Higgs, top, flavor observables

Connecting far apart scales naturally lends itself to the EFT framework



Heavy physics decouples and leaves effective contact interactions of  $\text{dim} > 4$


$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i,d} \frac{C_{i,d}^{\text{SMEFT}}}{\Lambda^2} \mathcal{O}_{i,d}^{\text{SMEFT}}$$

$$\mathcal{L}_{\text{LEFT}} = \mathcal{L}_{\text{QCD+QED}} + \sum_{i,d} \frac{C_{i,d}^{\text{LEFT}}}{v^2} \mathcal{O}_{i,d}^{\text{LEFT}}$$

Operators mix through RGE and what we really want to know is the SMEFT structure at the high scale

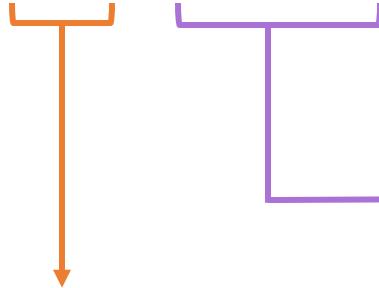
# Beyond EW fits – Higgs, top, flavor observables

Connecting far apart scales naturally lends itself to the EFT framework



Matchmakereft, 2112.10787  
MATCH2FIT, 2309.04523

Based on 1-loop SMEFT  
anomalous dimension


Jenkins, Manohar, and Trott,  
1308.2627, 1310.4838, 1312.2014

Jenkins, Manohar, Stoffer,  
1709.04486, 1711.05270

# The SMEFT framework for this study

Grzadkowski, Iskrzynski,  
Misiak, Rosiek, 1008.4884

$$\mathcal{L}_{SMEFT} = \mathcal{L}_{SM}^{(4)} + \sum_i \frac{C_i}{\Lambda^2} Q_i + \dots$$



“Warsaw” basis

$$\begin{aligned} \mathcal{L}_{SM}^{(4)} = & -\frac{1}{4}G_{\mu\nu}^A G^{A,\mu\nu} - \frac{1}{4}W_{\mu\nu}^I W^{I,\mu\nu} - \frac{1}{4}B_{\mu\nu} B^{\mu\nu} \\ & + (D_\mu\varphi)^\dagger (D^\mu\varphi) + m^2\varphi^\dagger\varphi - \frac{1}{2}\lambda(\varphi^\dagger\varphi)^2 \\ & + i(\bar{l}'_L \not{D} l'_L + \bar{e}'_R \not{D} e'_R + \bar{q}'_L \not{D} q'_L + \bar{d}'_R \not{D} d'_R) \\ & - (\bar{l}'_L \Gamma_e e'_R \varphi + \bar{q}'_L \Gamma_u u'_R \varphi + \bar{q}'_L \Gamma_d d'_R \varphi) + h.c. \end{aligned}$$

with covariant derivative:

$$D_\mu = \partial_\mu + ig_s G_\mu^A \mathcal{T}^A + ig_W W_\mu^I T^I + ig_1 B_\mu Y$$

gauge fields  
and masses,  
HVV, VVV

Higgs field and Mh

Yukawa couplings

Vff, HFF

| $X^3$                      |                                                                    | $\varphi^6$ and $\varphi^4 D^2$ |                                                                   | $\psi^2 \varphi^3$              |                                                                                                 |
|----------------------------|--------------------------------------------------------------------|---------------------------------|-------------------------------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------|
| $\mathcal{O}_G$            | $f^{ABC} G_\mu^{A\nu} G_\nu^{B\rho} G_\rho^{C\mu}$                 | $\mathcal{O}_\varphi$           | $(\varphi^\dagger\varphi)^3$                                      | $\mathcal{O}_{e\varphi}$        | $(\varphi^\dagger\varphi)(\bar{l}_p\varphi e_r)$                                                |
| $\mathcal{O}_W$            | $\varepsilon^{IJK} W_\mu^{I\nu} W_\nu^{J\rho} W_\rho^{K\mu}$       | $\mathcal{O}_{\varphi\Box}$     | $(\varphi^\dagger\varphi)\Box(\varphi^\dagger\varphi)$            | $\mathcal{O}_{u\varphi}$        | $(\varphi^\dagger\varphi)(\bar{q}_p\tilde{\varphi} u_r)$                                        |
|                            |                                                                    | $\mathcal{O}_{\varphi D}$       | $(\varphi^\dagger D^\mu\varphi)^* (\varphi^\dagger D_\mu\varphi)$ | $\mathcal{O}_{d\varphi}$        | $(\varphi^\dagger\varphi)(\bar{q}_p\varphi d_r)$                                                |
| $X^2 \varphi^2$            |                                                                    | $\psi^2 X \varphi$              |                                                                   | $\psi^2 \varphi^2 D$            |                                                                                                 |
| $\mathcal{O}_{\varphi G}$  | $\varphi^\dagger\varphi G_{\mu\nu}^A G^{A\mu\nu}$                  | $\mathcal{O}_{eW}$              | $(\bar{l}_p\sigma^{\mu\nu}e_r)\tau^I\varphi W_{\mu\nu}^I$         | $\mathcal{O}_{\varphi l}^{(1)}$ | $(\varphi^\dagger i \overset{\leftrightarrow}{D}_\mu \varphi)(\bar{l}_p\gamma^\mu l_r)$         |
| $\mathcal{O}_{\varphi W}$  | $\varphi^\dagger\varphi W_{\mu\nu}^I W^{I\mu\nu}$                  | $\mathcal{O}_{eB}$              | $(\bar{l}_p\sigma^{\mu\nu}e_r)\varphi B_{\mu\nu}$                 | $\mathcal{O}_{\varphi l}^{(3)}$ | $(\varphi^\dagger i \overset{\leftrightarrow}{D}_\mu^I \varphi)(\bar{l}_p\tau^I\gamma^\mu l_r)$ |
| $\mathcal{O}_{\varphi B}$  | $\varphi^\dagger\varphi B_{\mu\nu} B^{\mu\nu}$                     | $\mathcal{O}_{uG}$              | $(\bar{q}_p\sigma^{\mu\nu}T^A u_r)\tilde{\varphi} G_{\mu\nu}^A$   | $\mathcal{O}_{\varphi e}$       | $(\varphi^\dagger i \overset{\leftrightarrow}{D}_\mu \varphi)(\bar{e}_p\gamma^\mu e_r)$         |
| $\mathcal{O}_{\varphi WB}$ | $\varphi^\dagger\tau^I\varphi W_{\mu\nu}^I B^{\mu\nu}$             | $\mathcal{O}_{uW}$              | $(\bar{q}_p\sigma^{\mu\nu}u_r)\tau^I\tilde{\varphi} W_{\mu\nu}^I$ | $\mathcal{O}_{\varphi q}^{(1)}$ | $(\varphi^\dagger i \overset{\leftrightarrow}{D}_\mu \varphi)(\bar{q}_p\gamma^\mu q_r)$         |
|                            |                                                                    | $\mathcal{O}_{uB}$              | $(\bar{q}_p\sigma^{\mu\nu}u_r)\tilde{\varphi} B_{\mu\nu}$         | $\mathcal{O}_{\varphi q}^{(3)}$ | $(\varphi^\dagger i \overset{\leftrightarrow}{D}_\mu^I \varphi)(\bar{q}_p\tau^I\gamma^\mu q_r)$ |
|                            |                                                                    | $\mathcal{O}_{dG}$              | $(\bar{q}_p\sigma^{\mu\nu}T^A d_r)\varphi G_{\mu\nu}^A$           | $\mathcal{O}_{\varphi u}$       | $(\varphi^\dagger i \overset{\leftrightarrow}{D}_\mu \varphi)(\bar{u}_p\gamma^\mu u_r)$         |
|                            |                                                                    | $\mathcal{O}_{dW}$              | $(\bar{q}_p\sigma^{\mu\nu}d_r)\tau^I\varphi W_{\mu\nu}^I$         | $\mathcal{O}_{\varphi d}$       | $(\varphi^\dagger i \overset{\leftrightarrow}{D}_\mu \varphi)(\bar{d}_p\gamma^\mu d_r)$         |
|                            |                                                                    | $\mathcal{O}_{dB}$              | $(\bar{q}_p\sigma^{\mu\nu}d_r)\varphi B_{\mu\nu}$                 | $\mathcal{O}_{\varphi ud}$      | $(\bar{\varphi}^\dagger i \overset{\leftrightarrow}{D}_\mu \varphi)(\bar{u}_p\gamma^\mu d_r)$   |
| $(\bar{L}L)(\bar{L}L)$     |                                                                    | $(\bar{R}R)(\bar{R}R)$          |                                                                   | $(\bar{L}L)(\bar{R}R)$          |                                                                                                 |
| $\mathcal{O}_{ll}$         | $(\bar{l}_p\gamma_\mu l_r)(\bar{l}_s\gamma^\mu l_t)$               | $\mathcal{O}_{ee}$              | $(\bar{e}_p\gamma_\mu e_r)(\bar{e}_s\gamma^\mu e_t)$              | $\mathcal{O}_{le}$              | $(\bar{l}_p\gamma_\mu l_r)(\bar{e}_s\gamma^\mu e_t)$                                            |
| $\mathcal{O}_{qq}^{(1)}$   | $(\bar{q}_p\gamma_\mu q_r)(\bar{q}_s\gamma^\mu q_t)$               | $\mathcal{O}_{uu}$              | $(\bar{u}_p\gamma_\mu u_r)(\bar{u}_s\gamma^\mu u_t)$              | $\mathcal{O}_{lu}$              | $(\bar{l}_p\gamma_\mu l_r)(\bar{u}_s\gamma^\mu u_t)$                                            |
| $\mathcal{O}_{qq}^{(3)}$   | $(\bar{q}_p\gamma_\mu \tau^I q_r)(\bar{q}_s\gamma^\mu \tau^I q_t)$ | $\mathcal{O}_{dd}$              | $(\bar{d}_p\gamma_\mu d_r)(\bar{d}_s\gamma^\mu d_t)$              | $\mathcal{O}_{ld}$              | $(\bar{l}_p\gamma_\mu l_r)(\bar{d}_s\gamma^\mu d_t)$                                            |
| $\mathcal{O}_{lq}^{(1)}$   | $(\bar{l}_p\gamma_\mu l_r)(\bar{q}_s\gamma^\mu q_t)$               | $\mathcal{O}_{eu}$              | $(\bar{e}_p\gamma_\mu e_r)(\bar{u}_s\gamma^\mu u_t)$              | $\mathcal{O}_{qe}$              | $(\bar{q}_p\gamma_\mu q_r)(\bar{e}_s\gamma^\mu e_t)$                                            |
| $\mathcal{O}_{lq}^{(3)}$   | $(\bar{l}_p\gamma_\mu \tau^I l_r)(\bar{q}_s\gamma^\mu \tau^I q_t)$ | $\mathcal{O}_{ed}$              | $(\bar{e}_p\gamma_\mu e_r)(\bar{d}_s\gamma^\mu d_t)$              | $\mathcal{O}_{qu}^{(1)}$        | $(\bar{q}_p\gamma_\mu q_r)(\bar{u}_s\gamma^\mu u_t)$                                            |
|                            |                                                                    | $\mathcal{O}_{ud}^{(1)}$        | $(\bar{u}_p\gamma_\mu u_r)(\bar{d}_s\gamma^\mu d_t)$              | $\mathcal{O}_{qu}^{(8)}$        | $(\bar{q}_p\gamma_\mu T^A q_r)(\bar{u}_s\gamma^\mu T^A u_t)$                                    |
|                            |                                                                    | $\mathcal{O}_{ud}^{(8)}$        | $(\bar{u}_p\gamma_\mu T^A u_r)(\bar{d}_s\gamma^\mu T^A d_t)$      | $\mathcal{O}_{qd}^{(1)}$        | $(\bar{q}_p\gamma_\mu q_r)(\bar{d}_s\gamma^\mu d_t)$                                            |
|                            |                                                                    |                                 |                                                                   | $\mathcal{O}_{qd}^{(8)}$        | $(\bar{q}_p\gamma_\mu T^A q_r)(\bar{d}_s\gamma^\mu T^A d_t)$                                    |

4-fermion interactions: tt, ttH, DY

- Dim-6 operators only, including linear and quadratic effects
- Obeying SM symmetries, CP even
- Assuming  $U(2)^5$  flavor symmetry (3<sup>rd</sup> generation singled out)
- One Higgs doublet of  $SU(2)_L$ , SSB linearly realized.

# Direct and indirect SMEFT effects

## Example: Higgs sector

$$\mathcal{L}_\varphi = (D_\mu \varphi)^\dagger (D^\mu \varphi) + m^2 (\varphi^\dagger \varphi) - \frac{\lambda}{2} (\varphi^\dagger \varphi)^2 + \hat{C}_\varphi (\varphi^\dagger \varphi)^3 + \hat{C}_{\varphi \square} (\varphi^\dagger \varphi) \square (\varphi^\dagger \varphi) + \hat{C}_{\varphi D} (\varphi^\dagger D_\mu \varphi)^* (\varphi^\dagger D^\mu \varphi)$$

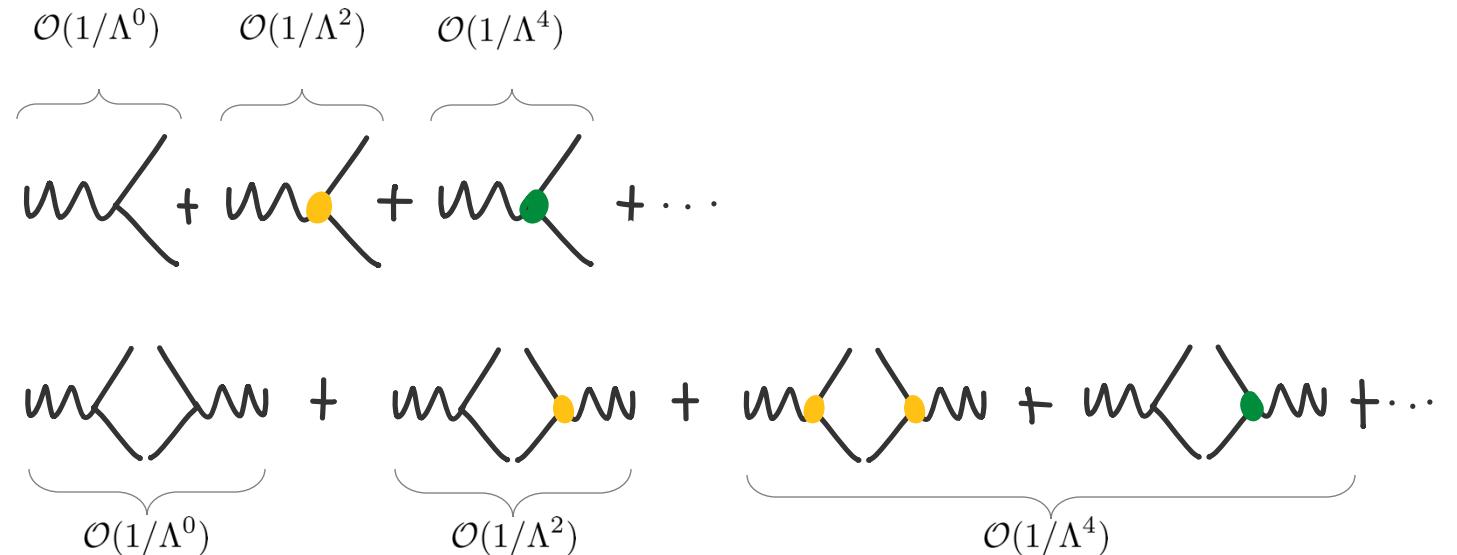
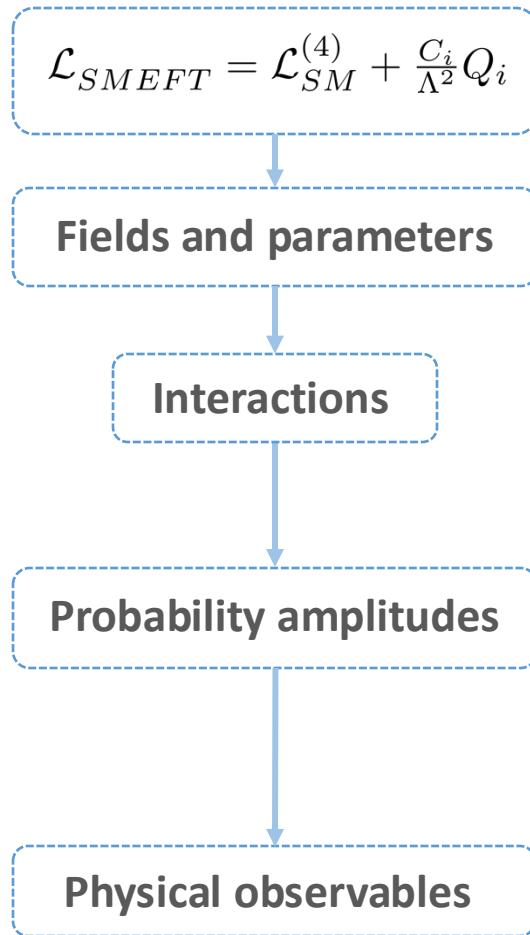
VEV identified from the minimization of  $V(\varphi)$ :

$$\bar{v} = \sqrt{\frac{2m^2}{\lambda}} \left( 1 + \frac{3m^2 \hat{C}_\varphi}{2\lambda^2} + \frac{63m^4 \hat{C}_\varphi^2}{8\lambda^4} + \dots \right)$$

$$\varphi = \begin{pmatrix} 0 \\ \frac{\bar{v}+h}{\sqrt{2}} \end{pmatrix} \leftrightarrow \text{Expansion of SU(2) scalar doublet around the VEV and Higgs field (unitary gauge)}$$

Shift on the Higgs field identified from the normalization of its kinetic-term:

$$\bar{h} \equiv Z_h h = \left( 1 + \frac{\bar{v}^2}{4} \left( \hat{C}_{\varphi D} - 4\hat{C}_{\varphi \square} \right) - \frac{\bar{v}^4}{32} \left( \hat{C}_{\varphi D} - 4\hat{C}_{\varphi \square} \right)^2 + \dots \right) h$$



Shift on the physical mass of the Higgs field identified from the normalization of its mass-term:

$$M_h^2 = \lambda \bar{v}^2 - \bar{v}^4 \left( 3\hat{C}_\varphi - 2\hat{C}_{\varphi \square} \lambda + \frac{1}{2} \hat{C}_{\varphi D} \lambda \right) - \frac{\bar{v}^6}{2} (4\hat{C}_{\varphi \square} - \hat{C}_{\varphi D}) \left( 3\hat{C}_\varphi - 2\hat{C}_{\varphi \square} \lambda + \frac{1}{2} \hat{C}_{\varphi D} \lambda \right) + \dots$$

Direct effect on hVV interaction

$$\hat{C}_{\varphi D} (\varphi^\dagger D_\mu \varphi)^* (\varphi^\dagger D^\mu \varphi) \rightarrow V^\mu V_\mu h$$

# SMEFT predictions

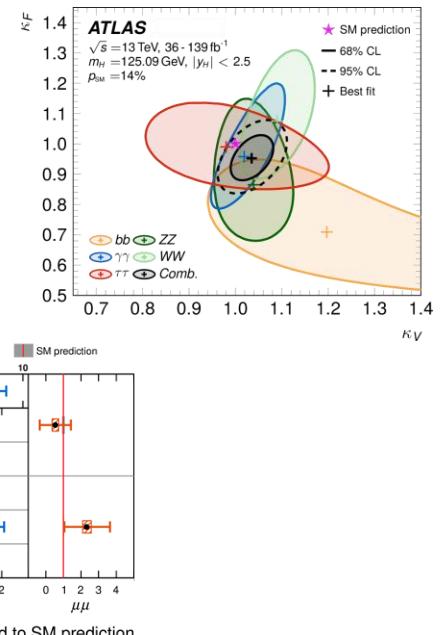
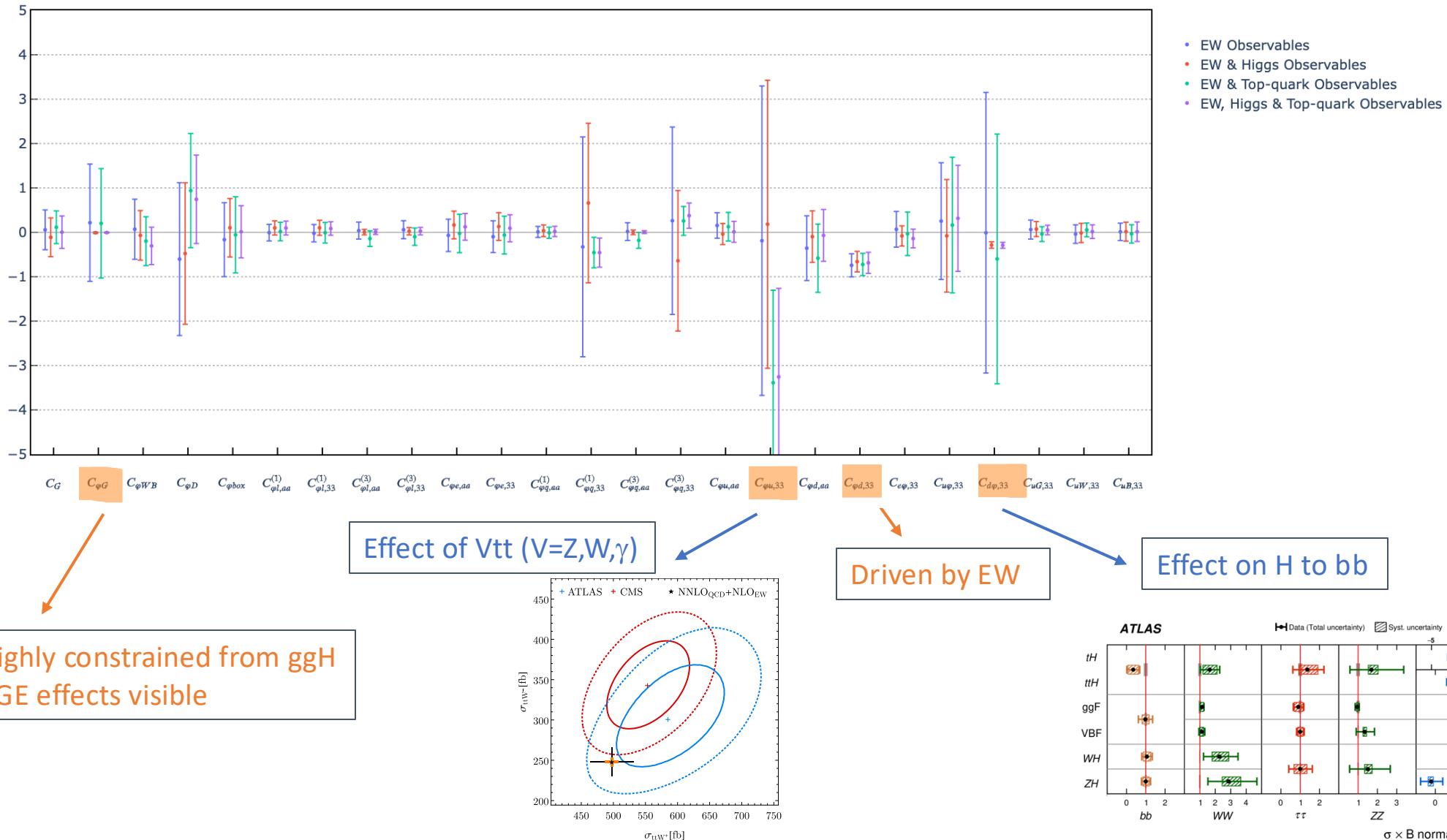


$$O_{SMEFT} = O_{SM} + \underbrace{\Delta O^{(1)}}_{\mathcal{O}(1/\Lambda^2)} + \underbrace{\Delta O^{(2)}}_{\mathcal{O}(1/\Lambda^4)} + \dots$$

# SMEFT predictions

A given observable will be written as

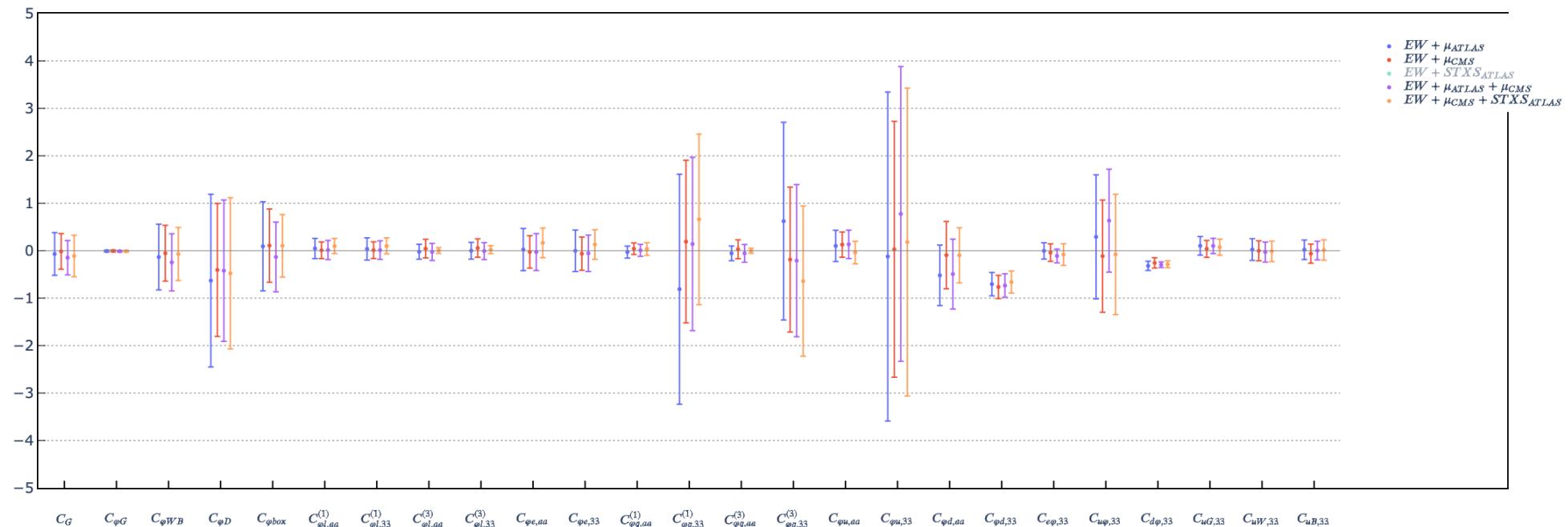
$$O_{\text{SMEFT}} = O_{\text{SM}} + \Delta O^{(1)} + \Delta O^{(2)} + \dots$$


Observables have been calculated either analytically and via parametrizations reported in the literature (e.g. EW observables) or obtained using various tools (MG5\_aMC@NLO with **SMEFTci2**, a new UFO file developed for this study, Feynart+Feyncalc for loop-induced Higgs decays, ...)

See also, SmeftFR-v3, Dedes et al. 2302.01353

Including direct and indirect SMEFT effects from dim-6 operators up to  $O(1/\Lambda^4)$ , by **A. Goncalves**


# Preliminary results



# Preliminary results

$$\mu_{ij} = \frac{\sigma_i \times Br_j}{(\sigma_i \times Br_j)_{SM}}$$

Breakdown of Higgs-boson observables – **consistent picture from signal strength measurements**



# Conclusions

- **Global fits** stress-test the SM and provide a **very strong indirect constraint on new physics**.
- Effects of new physics can then be constrained using the **broad spectrum of precision measurement available from EW, Higgs, top, flavor physics and more**.
- The **SMEFT ( $\rightarrow$ LEFT) framework** can be used to connect unknown physics at the UV scale ( $> 1$  TeV) to the EW scale and below within a **systematic framework that allows some model independence**.
- With **increasing precision** in both theory and experiments, constraints **could start to show intriguing patterns and guide future explorations**.

Back-up slides

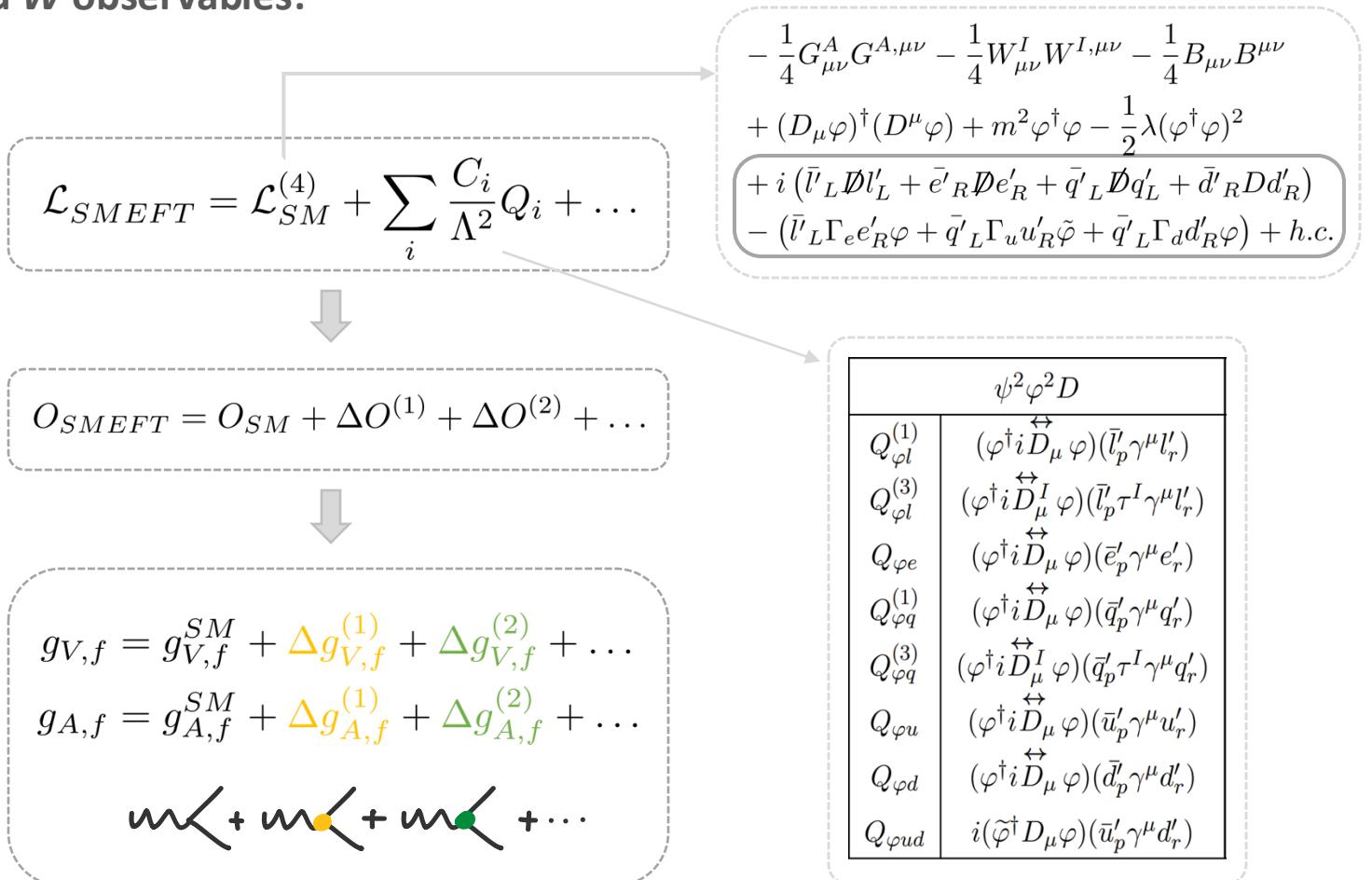
# EW Observables:

- Analytic parametrization of  $Z$  and  $W$  observables:

$$\Gamma_{Z,f} = N_f \frac{G_F M_Z^3}{24\sqrt{2}\pi} 4 [(g_{V,f})^2 + (g_{A,f})^2]$$

$$R_e^0 = \frac{\Gamma_{had}}{\Gamma_e} \quad R_{q,\nu}^0 = \frac{\Gamma_{q,\nu}}{\Gamma_{had}}$$

$$\sigma_{had}^0 = \frac{12\pi}{M_Z^2} \frac{\Gamma_e \Gamma_{had}}{\Gamma_Z^2}$$


$$A_f = \frac{2 \left( \frac{g_{V,f}}{g_{A,f}} \right)}{1 + \left( \frac{g_{V,f}}{g_{A,f}} \right)^2} \quad A_{FB,f} = \frac{3}{4} A_e A_f$$

Z

$$\sin^2 \theta_{eff,l} = \frac{1}{4} \left( 1 - \frac{g_{V,l}}{g_{A,l}} \right)$$

$W^\pm$

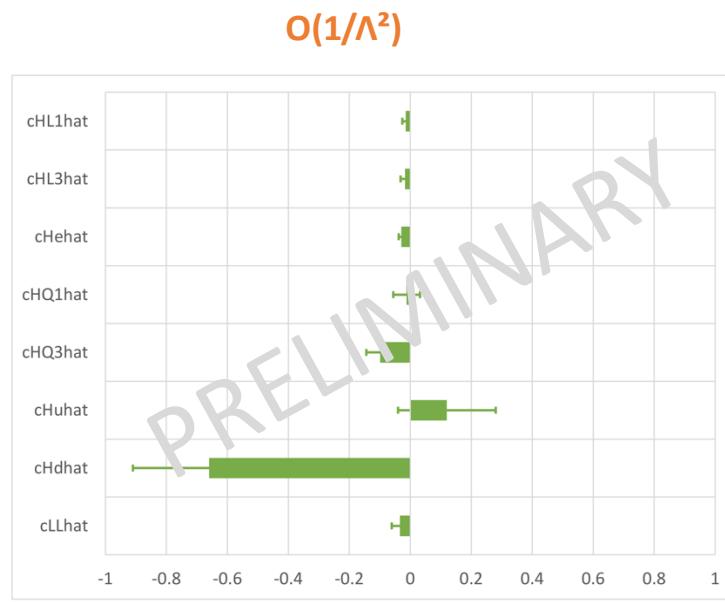
$$M_W \quad \Gamma_{(W \rightarrow f_i f_j)} \quad Br W_{fifj}$$



# EW Observables:

- Preliminary Global Fit of EW observables at quadratic order in the d=6 SMEFT:

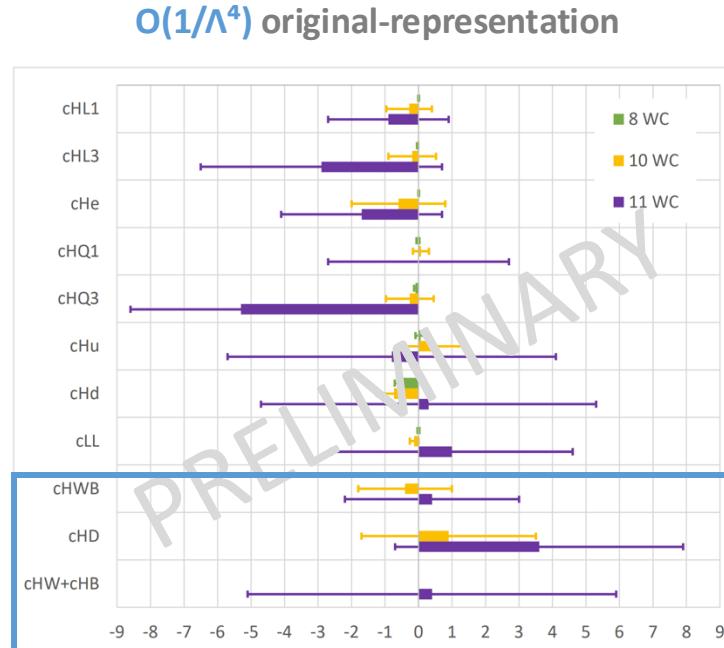
| Observable              | $C_{\varphi D}$ | $C_{\varphi WB}$ | $C_{\varphi L}^{(3)}$ | $C_{LL}$ | $C_{\varphi L}^{(1)}$ | $C_{\varphi e}$ | $C_{\varphi Q}^{(1)}$ | $C_{\varphi Q}^{(3)}$ | $C_{\varphi u}$ | $C_{\varphi d}$ | $C_{\varphi B}$ | $C_{\varphi W}$ | $C_{\varphi ud}$ |
|-------------------------|-----------------|------------------|-----------------------|----------|-----------------------|-----------------|-----------------------|-----------------------|-----------------|-----------------|-----------------|-----------------|------------------|
| $A_l$                   |                 |                  |                       |          |                       |                 |                       |                       |                 |                 |                 |                 |                  |
| $A_{FB}^l$              | ✓               | ✓                | ✓                     | ✓        | ✓                     | ✓               |                       |                       |                 |                 | ✓               | ✓               |                  |
| $P_{\tau}^{pol}$        |                 |                  |                       |          |                       |                 |                       |                       |                 |                 |                 |                 |                  |
| $\sin \theta_{eff,l}^2$ |                 |                  |                       |          |                       |                 |                       |                       |                 |                 |                 |                 |                  |
| $A_c$                   | ✓               | ✓                | ✓                     | ✓        |                       |                 | ✓                     | ✓                     | ✓               |                 | ✓               | ✓               |                  |
| $R_c^0$                 |                 |                  |                       |          |                       |                 |                       |                       |                 |                 |                 |                 |                  |
| $A_b$                   |                 |                  |                       |          |                       |                 |                       |                       |                 |                 |                 |                 |                  |
| $A_s$                   | ✓               | ✓                | ✓                     | ✓        |                       |                 | ✓                     | ✓                     |                 | ✓               | ✓               | ✓               |                  |
| $R_b^0$                 |                 |                  |                       |          |                       |                 |                       |                       |                 |                 |                 |                 |                  |
| $A_{FB}^c$              | ✓               | ✓                | ✓                     | ✓        | ✓                     | ✓               | ✓                     | ✓                     | ✓               |                 | ✓               | ✓               |                  |
| $A_{FB}^b$              | ✓               | ✓                | ✓                     | ✓        | ✓                     | ✓               | ✓                     | ✓                     |                 | ✓               | ✓               | ✓               |                  |
| $R_l^0$                 |                 |                  |                       |          |                       |                 |                       |                       |                 |                 |                 |                 |                  |
| $\Gamma_Z$              | ✓               | ✓                | ✓                     | ✓        | ✓                     | ✓               | ✓                     | ✓                     | ✓               | ✓               | ✓               | ✓               |                  |
| $\sigma_{had}^0$        |                 |                  |                       |          |                       |                 |                       |                       |                 |                 |                 |                 |                  |
| $M_W$                   | ✓               | ✓                | ✓                     | ✓        |                       |                 |                       |                       |                 |                 |                 |                 |                  |
| $\Gamma_W$              | ✓               | ✓                | ✓                     | ✓        | ✓                     |                 |                       |                       | ✓               | ✓               | ✓               | ✓               | ✓                |
| $BrW$                   |                 |                  |                       |          |                       |                 |                       |                       |                 |                 |                 |                 |                  |


$O(1/\Lambda^4)$  : degeneracy is (analytically) lifted

$O(1/\Lambda^2)$  : Constrain 8 independent relations

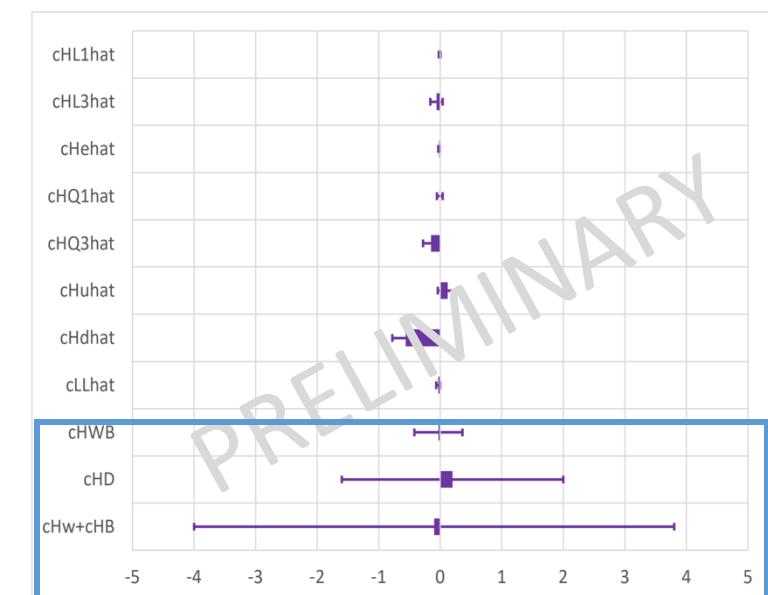
$$\begin{aligned}
 \hat{C}_{\varphi L}^{(3)} &= \hat{C}_{\varphi L}^{(3)} + \frac{1}{4} \frac{\widetilde{c_W}^2}{\widetilde{s_W}^2} \hat{C}_{\varphi D} + \frac{\widetilde{c_W}}{\widetilde{s_W}} \hat{C}_{\varphi WB} \\
 \hat{C}_{\varphi Q}^{(3)} &= \hat{C}_{\varphi Q}^{(3)} + \frac{1}{4} \frac{\widetilde{c_W}^2}{\widetilde{s_W}^2} \hat{C}_{\varphi D} + \frac{\widetilde{c_W}}{\widetilde{s_W}} \hat{C}_{\varphi WB} \\
 \hat{C}_{\varphi L}^{(1)} &= \hat{C}_{\varphi L}^{(1)} + \frac{1}{4} \hat{C}_{\varphi D} \\
 \hat{C}_{\varphi Q}^{(1)} &= \hat{C}_{\varphi Q}^{(1)} - \frac{1}{12} \hat{C}_{\varphi D} \\
 \hat{C}_{\varphi e} &= \hat{C}_{\varphi e} + \frac{1}{2} \hat{C}_{\varphi D} \\
 \hat{C}_{\varphi u} &= \hat{C}_{\varphi e} - \frac{1}{3} \hat{C}_{\varphi D} \\
 \hat{C}_{LL} &= \hat{C}_{LL}
 \end{aligned}$$

# EW Observables:


- Preliminary Global Fit of EW observables at quadratic order in the d=6 SMEFT:



| Fit parameters | Analytically | Numerically |
|----------------|--------------|-------------|
|----------------|--------------|-------------|


|          |   |   |
|----------|---|---|
| $\leq 8$ | ✓ | ✓ |
| $> 8$    | ✗ | ✗ |

flat distributions  
full correlations



| Fit parameters | Analytically | Numerically |
|----------------|--------------|-------------|
|----------------|--------------|-------------|

|          |   |   |
|----------|---|---|
| $\leq 8$ | ✓ | ✓ |
| $> 8$    | ✓ | ✗ |



| Fit parameters | Analytically | Numerically |
|----------------|--------------|-------------|
|----------------|--------------|-------------|

|          |   |   |
|----------|---|---|
| $\leq 8$ | ✓ | ✓ |
| $> 8$    | ✓ | ✓ |

improve sensitivity  
for  $\{c_{HWB}, c_{HD}, c_{HW+cHB}\}$

# Change of input-scheme:

$$\{\bar{g}, \bar{g}', \bar{v}, \lambda\} \rightarrow \{\tilde{\alpha}, \tilde{M}_Z, \tilde{G}_F, \tilde{M}_h\}$$

1

Write “barred” initial parameters in terms of “barred” final parameters:

$$\bar{g} = \sqrt{8\pi\bar{\alpha}} \left[ 1 - \sqrt{1 - \frac{2\sqrt{2}\pi\bar{\alpha}}{\bar{G}_F \bar{M}_Z^2}} \right]^{-1/2}$$

$$\bar{g}' = \sqrt{8\pi\bar{\alpha}} \left[ 1 + \sqrt{1 - \frac{2\sqrt{2}\pi\bar{\alpha}}{\bar{G}_F \bar{M}_Z^2}} \right]^{-1/2}$$

$$\bar{v} = \frac{1}{\sqrt{\sqrt{2}\bar{G}_F}}$$

$$\lambda = \frac{\bar{M}_h^2}{\bar{v}^2}$$

2

Write final input parameters (“tilded”) in terms of their “barred” and shifts:

$$\tilde{\alpha} \equiv \bar{\alpha} (1 + \delta_\alpha)$$

$$\tilde{M}_Z^2 \equiv \bar{M}_Z^2 (1 + \delta_{M_Z^2})$$

$$\tilde{G}_F \equiv \bar{G}_F (1 + \delta_{G_F})$$

$$\tilde{M}_h^2 \equiv \bar{M}_h^2 (1 + \delta_{M_h^2})$$

3

Obtain  $\delta$ ’s from the derived physical parameters and express in terms of input-scheme

4

Compute appropriately up to quadratic order