Higes Physics - Theory
Lecture |

The Higgs boson as predicted by the Standard Model of
electroweak interactions

Laura Reina

CERN-FERMILAB
HADRON COLLIDER PHYSICS

\ J Summer School

CERN-Fermilab HCP Summer School, CERN, August, 29 2019



LHC Higgs-boson physics is as important as ever!
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Much improved statistics: main production and decay modes observed.

— Access to Higgs couplings: Higgs portal to new physics!



Outline of these lectures

e Lecture 1: the Standard-Model Higgs boson.

— EW gauge symmetry, Higgs mechanism.
— Higgs-boson interactions.
— Quantum constraints.

e Lecture 2: Higgs-boson physics at the LHC.

— Production and decay modes, what do they probe.
— Theoretical predictions and their accuracy.

e Lecture 3: from Higgs-boson properties to new physics.

—» Probing specific extensions of the SM.
— Probing classes of interactions within SM boundaries.



The Standard Model of particle physics

“The Standard Model is a gauge invariant quantum field theory based on

the local symmetry group SU(3) x SU(2) x U(1).”
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with some caveats:

— Masses of Z and W bosons breaks gauge invariance <

EWSB

— Fermion masses breaks gauge invariance as well.



The Higgs discovery has constrained the mechanism of EWSB

Before H discovery After H discovery
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The EW symmetry is spontaneously broken (55B) to U(1)g

Quarks

<2.2eV <0.17 MeV <15.5 MeV

AL

Bosons (Forces)

Leptons

W=, 2° Mw, Mz #0
SU2)z x U1y 2B U(1)o { w, Mz #
¥ m~ =0

After which, fermions get mass through Yukawa-type interactions.



The SM Lagrangian on a mug ...

Locp — | M. Grazzini’s lectures
Lori = Locp+ L @
QCD EW

We will focus on:

Loy = ﬁgauge+£ferm_|_£Yukawa_|_£scala7~

L2 — 15* line
[,ferm — 3 97 Jipe

and in particular:

Yukawa __y 3rd Jine

scalar th q:
v — 4" line

Very simple and very complete — contains all kinds of d =4

renormalizable interactions between scalar, fermion, and vector fields.



From Global to Local: gauging a symmetry

Abelian case (— QED)

A theory of free Fermi fields described by the Lagrangian density
L =1(z)(ig —m)(z)
is invariant under a global U(1) transformation (a=constant phase)
(z) — e"*P(x) such that 9, (z) — €0, (x)
The same is not true for a local U(1) transformation (o = a(x)) since
Y(x) = e Dp(x) but Juy(x) = €W op(x) + ige Mo a () (x)
Need to introduce a covariant derivative D, such that

Dui(z) = e Dyy(x)



Only possibility: introduce a vector field A, (x) transforming as

Au(x) = Au(z) - ;auacc)

and define a covariant derivative D,, according to
D, =0,+19A,(x)

modifying £ to accomodate D, and the gauge field A, (x) as

1

£ = §(@)(iP— m)p(x) — 5 (2)Fy (2)

where the last term is the Maxwell Lagrangian for a vector field A*, i.e.

Fou(@) = 8, A, () — 8,4, () .

Requiring invariance under a local U(1) symmetry has:

—— promoted a free theory of fermions to an interacting one;
— fixed the form of the interaction in terms of a new vector field A*(x):

Lint = —g¥(x) 1,1 (x) A" (2)

— no mass term A*¥ A, allowed by the symmetry — this is QED.



Non-abelian case: Yang-Mills theories

Consider the same Lagrangian density

L = 1(z) (i — m)(x)

where ¢(z) — ¥;(x) (i =1,...,n) is a n-dimensional representation of a
non-abelian compact Lie group (e.g. SU(N)).

L is invariant under the global transformation U («)
Y(z) = ¢ (2) =U(a)g(z) , Ula) =" =1+ia"T*+ O(a?)

where T* ((a = 1,...,d.q;)) are the generators of the group infinitesimal

transformations with algebra,
[Ta, Tb] _ ifabcTc

and the corresponding Noether’s current are conserved. However, requiring

L to be invariant under the corresponding local transformation U (x)
U(z) =1+ ia®(x)T* + O(a?)
brings us to replace 0,, by a covariant derivative

D, =0, —igAj(x)T*



in terms of vector fields A7 () that transform as
a a 1 a aoc C
AM(ZE) — Au(x) + gaua () + f b AZ(x)cu ()
such that

D, — U(z)D, U '(z)
Duile) = U@)DU™ (@)U (@) = U)Dyai(x)
F,, = é[DM,D,,] — U(z)F,U (2)

The invariant form of £ or Yang Mills Lagrangian will then be

Lyar = L, Dyyib) — %TrFWFW | B — m)w — iF v

urr a

where F,, = F,T% and
a a a abc Ab gc
Fy, = 0,4, — 0, A, +gf" Al A

Notice: boxed part is lines 142 of the mug Lagrangian!



Also notice that:

e as in the abelian case:

— mass terms A" Aj, are forbidden by symmetry: gauge bosons
are massless.

—— the form of the interaction between fermions and gauge bosons is fixed
by symmetry to be

Lint = —gp(x) v, T Y(x) A" (x)

e at difference from the abelian case:

—— gauge bosons carry a group charge and therefore ...

— gauge bosons have self-interaction.

—— the quantization procedure can be trickier (gauge fixing, ghosts).

— Can we build a massive gauge theory?



Feynman rules, Yang-Mills theory:
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Spontaneous Breaking of a Gauge Symmetry

Higgs mechanism, abelian case: abelian gauge theory (one vector field

A*(x)) coupled to one complex scalar field ¢(x):

L=1La+Ly

where

1 1
La=—7F"E,, = (0" A - 9" A")(9,A, - 9,4,)

and (D*=0" + igAH)
Ly = (D'¢)" Dy — V(§) = (D'¢)* Do — 29" ¢ — A(¢*¢)°
L invariant under local U(1) symmetry:
pla) — e @o(a)

Al(z) Au(x)+$aﬂa(x)

Mass term for A* breaks the U(1) gauge invariance (same as before).



Can we build a gauge invariant massive theory? Yes.

Consider the potential of the scalar field:
V(o) = i*¢* ¢+ A(o*¢)?

where A>0 (to be bounded from below), and observe that:
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e 112>0 — electrodynamics of a massless photon and a massive scalar
field of mass u (g=—e).

¢ <0 — when we choose a minimum, the original U(1) symmetry

is spontaneously broken or hidden.

o\ 1/2 .
%:(—“—) _ s o(@) = do + —= (61 (2) + in(x))

2A V2 V2
Y
L= —EF“”FW + %9 v AMA, %(5%1) prot |+ %(0’%2) + guA, 0" o + .
h g 2 massive scalar field an Goldstone boson ’

massive vector field
Side remark: The ¢, field actually generates the correct transverse
structure for the mass term of the (now massive) A* field propagator:
—1

AR = (9“” - ’“Zf) +

oy




More convenient parameterization (unitary gauge):

e’ v U(1) 1

(+HE) = =

The x(x) degree of freedom (“would-be” Goldstone boson) is rotated away

(v+ H(z))

using gauge invariance, while the original Lagrangian becomes:

g°v’ 1 2 172
L=Lat+ = A“AM+§(8“H6MH+2MH)+...

which describes now the dynamics of a system made of:

e a massive vector field A* with mi = g%v?;

e a real scalar field H of mass m?% =—2u? =2v?: the Higgs field.

4

Total number of degrees of freedom is balanced
(2 vector +2 scalar d.o.f) — (3 vector+1 scalar d.o.f.)



Higgs mechanism, non-abelian case: several vector fields A% (z) and several
(real) scalar field ¢;(x):

1 A
L=La+Ly , Ly= §(D“¢)2 V(o) , V(o) =p’¢" + §¢4
(u? <0, A>0) invariant under a non-Abelian symmetry group G:
o =iT°

qbi — (]. + ioz“ta)z-jgbj — (1 — OzaTa)ijgbj

s.t. D,=0,+ gA*T*). In analogy to the Abelian case:
K K v

1 1 ) )
min—P0 1 a 4
P L TG0 (T760) ALY . =

-~

2

mab

T%py # 0| — massive vector boson + (Goldstone boson)

Ty =0| — massless vector boson + massive scalar field




Classical — Quantum : V(d) — Vers(per)

The stable vacuum configurations of the theory are now determined by the

extrema of the Effective Potential:
1

Verr(pea) = —ﬁreff[¢cl] , ¢ = constant = @
where
oW J
Copsloal = WU = [ 0T @éaty) . dal) =512 = Oo(@)0)

W [J] — generating functional of connected correlation functions
I'errlder] — generating functional of 1PI connected correlation functions

Vers(wer) can be organized as a loop expansion (expansion in h), s.t.:

Veff(%l) = V(sﬁcz) + loop effects

SSB — non trivial vacuum configurations



The R¢ gauges: nature of would-be Goldstone bosons made explicit.

Consider the abelian case:
1

£=-1PwE, 1 (D") D - V(o)
upon SSB:
(@) = = (v +61(2) + ida(@)
4
L= TP Fuy b 2(0%01 +gA*6:)" + 2(0402 — gA* (v + 61))° — V(0)

Quantizing using the gauge fixing condition:

1
G = ﬁ(aMAM + Egugs)

in the generating functional

7 = O/DAD¢1D¢2 exp [/ diz (/:— —G2)] det (ig)

(¢ — gauge transformation parameter)



- %(ﬂ = —%AM (—guan (1 - —) 99" — (g )29“’/) A,

Lohost = € [—02 — 5(90)2 (1 + %)] c

such that:

(AR(R)AY(=F)) =

(P1(k)p1(—k)) =
(P2(k)p2(—k)) = (c(k)

Goldtone boson ¢y, <~—

longitudinal gauge bosons




Glashow-Weinberg-Salam Model, i.e. the SM:
Spontaneously broken Yang-Mills theory based on SU(2)r x U(1)y.

e SU(2)r — weak isospin group, gauge coupling g:
> three generators: T° = 0" /2 (¢ = Pauli matrices, i = 1, 2, 3)
> three gauge bosons: W', W} and WY
> L = (1 — 75)¢ fields are doublets of SU(2)
> Yr = 3 (14 5)1 fields are singlets of SU(2)
> mass terms not allowed by gauge symmetry

e U(1l)y — weak hypercharge group (Q = T5 +Y), gauge coupling g':

> one generator — each field has a Y charge
> one gauge boson: B*

Example: first generation

L = (Ver)v=0 (er)y=-1
€L
Y=—1/2
ur,
QL = (UR)Y=2/3 (dR>Y:—1/3
dr,

Y=1/6



Three fermionic generations, summary of gauge quantum numbers:

SUB)e SUQR)L Uy U(l)g

; Ur CL tr 2

Qi = 3 2 : g

dL ST, bL —3

”LL?R = UR CRr tR 3 1 % %

7];.'% = dR SR bR 3 1 —% —%

. Ve v U, 0
Li = g nh . 1 2 1

er UL TL —1

e = eRr LR TR 1 1 —1 —1

v = VeR ViR VrR 1 1 0 0

where a minimal extension to include v}, has been allowed (notice however

that it has zero charge under the entire SM gauge group!)



Lagrangian of fermion fields

For each generation (here specialized to the first generation):

Low’ = LD Lp+er(iD)er+ver(iD)ver+Qr(iP)Qr+ur(iD)ur+dr(iD)dr
where in each term the covariant derivative is given by

o 1
Dy =0, —igW,T" —ig' ;Y B,

and T° = ¢ /2 for L-fields, while T% = 0 for R-fields (i = 1,2, 3), i.e.

ig 0o W, i [ gW; —4g'YB, 0
Dur = 0u——%2 Y
V2 \ w0 2 0 —gW? —¢'YB,
1
D,r = 0.+ ig'iYBu
with
1
+ 1 2
W+ =— (W, FiW;)



L£erm can then be written as
f f
Low = Liin +Loc+ Lnc
where

£feym

kin

= Z_;L(Z@)LL + éR(i@)eR + ...
9

ﬁC’C — ﬂW;EeLvueL + WM_éL’Y'LLVeL + ...

/

Lye = SWElBay"ver — enyer] + 5B [Y (L) (Zery " ver + 17" er)
-+ Y(GR)EGR’)/’LLVGR—I—Y(eR)éR’y’ueR] + ...
where
|44

% (W/} F zWi) — mediators of Charged Currents
7

:|: p—
WS and B, — mediators of Neutral Currents.

4

However neither Wj nor B, can be identified with the photon field A,

because they couple to neutral fields.




Rotate WS and B, introducing a weak mixing angle (6y)

Wi’ = sinfw A, +cosbw 2,
B, = cosOwA, —sinbw 2,

such that the kinetic terms are still diagonal and the neutral current
Lagrangian becomes

Lyc = Ypy* (g sin Ow T + ¢’ cos GWY> YA, Py (g cos Oy T° — ¢ sin Oy — >¢Z

for Y1 = (ver,er, Ver, €r,...). One can then identify (QQ — e.m. charge)

Y
eQ = gsin Oy T° + ¢’ cos QWE

and, e.g., from the leptonic doublet L derive that

/
sin Oy — % cos Oy = 0

g
2 — gsinfOy = ¢’ cosby = e

— 35 sin Oy — %COSHW = —¢



where

’Uf—

CLf—

TS
Sw F
Cw Qs + 28w Cw
3
i




Lagrangian of gauge fields

CEE = W WO LB, B
where
B,, = 0.B,—0,B,
We, = 0W—0,W;+ ge™ W W

in terms of physical fields:

gauge __ o, gauge 3V 4v
[’EW =L + EEW + EEW

kin
where
LENE = (@0 — 0@ W - W
- i(auz,, 020" 2 — 0" 7" — %
Lyw = (3-gauge-boson vertices involving ZW W~ and AWTW )
Lyw = (4-gauge-boson vertices involving ZZWTW =, AAWTW

AZWTW =, and WTW-WHTW ")

(0, Ay — 8y A) (9" A” — §¥ AM)



kﬂky>
! (g,ul/ T

k p—

M

2
M
) | (kv —k1)u]
. + Jpu
- kV)u
k_
+ gl/p(
+ (ky —Fk-)p
WM ieCV [gW
Z;ngp - g,uagup)
— YupYvo
" : 2910 9p0
Wu . 2CVV/( glu
= 1€
:}{W cw
W, N _SW
c,=1, |
| il
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C%V O’yZ — T
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Cyy = —



The Higgs sector of the Standard Model: sU@2). x U(1)y 28 U(1)o

Introduce one complex scalar doublet of SU(2);, with Y =1/2:
2 B
6 = ( gy ) > LEP = (D'0)' Do — 1266 — AgT9)?
where D, ¢ = (0, —igWiT* —ig'YyB,), (T*=0"/2, a=1,2,3).

The SM symmetry is spontaneously broken when (¢) is chosen to be (e.g.):

o2\ 1/2
<</5>=1<0> with v:<T“) (W <0, A >0)

The gauge boson mass terms arise from:

(%

(D*¢)'Dyp — -+ é(O v) (gWio® + ¢'By) (gW'Ha® + g’ B) ( 0 > R

1 v?
— Ao (W) (W) + (—gW, +9'Bu)] + -



And correspond to the weak gauge bosons:

1 , .
1 3 / v
ZM — \/W(QWM -9 B,u) — | Mz = 92 +g/2§

while the linear combination orthogonal to Z,, remains massless and
corresponds to the photon field:

_ 1 "3 _
AM_ \/W(g Wu —I—QBM> — | Ma =0

Notice: using the definition of the weak mixing angle, 6,,:

/

cosf, = J sinf,, = g

the W and Z masses are related by: | My, = My cos 8,




The scalar sector becomes more transparent in the unitary gauge:

_enX(@)T 0 SU(2) 1 0
#e) = V2 (U—FH(QJ)) —> gb(aj)_\@(@—kH(az))

after which the Lagrangian becomes

1 1 A 1
L= p*H? — \H?> — ZH4 = —§M§IH2 — \/;MHH?’ - ZAH‘*

Three degrees of freedom, the x*(x) Goldstone bosons, have been
reabsorbed into the longitudinal components of the Wf and Z,, weak

gauge bosons. One real scalar field remains:

the Higgs boson, H, with mass | M7 = —2u* = 2\v?

and self-couplings:

H_ H_ _H
AN M2 \\\ /// M2
- H= -3 UH X = —310—5{



From (D*¢)' D, ¢ — Higgs-Gauge boson couplings:

vH vH H

. 2 /// ) 2
— My v % _ My 1%
VY \VA4 N H

Notice: The entire Higgs sector depends on only two parameters, e.g.

MH and v

v measured in p-decay: —+ | SM Higgs Physics depends on My

v = (v2GF)"1? =246 GeV

Run 142 (combined): My = 125.09 4+ 0.24 (£0.21) GeV



Also: remember Higgs-gauge boson loop-induced couplings:

AN VWL v.Z
H_____ v H_____
VAVAVAVRY Y
(6600 9
H_____ Y
"0000> g

Surprisingly important in Higgs-boson phenomenology!



Higgs boson couplings to quarks and leptons

The gauge symmetry of the SM also forbids fermion mass terms

(mg, Q% ubk, . ..), but all fermions are massive.

4

Fermion masses are generated via gauge invariant Yukawa couplings:
Lyukewe — _TUQL gyl — T QY ¢dly — T L gl + hec.

such that, upon spontaneous symmetry breaking:

v+ H - U+ H = v+ H
£Yukawa — _F’L]u ] FZ]CZ L F’Lj l’L
EW L \/* d \/* e \/§

o H
> fiMPf, (1 + ?) +h.c.

fri.g

l}a—f—hc

where

My =17 G

is a non-diagonal mass matrix.



Upon diagonalization (by unitary transformation Uy, and Ug)
Mp = (Uf) MU}
and defining mass eigenstates:
L= (U0 fl, and f7 = (Up)iifk

the fermion masses are extracted as

Y i : H
Lyueme = N fi(UL) MU (1 + ;) +h.c.
Ry
. o H
= Yo (Gt asg) (140



In terms of the new mass eigenstates the quark part of Lo now reads

g _si u\trrd J
L = —u(UH"US|v*d% <+ h.c.
ccC \/5 L [( L) R]/y L

where
Vern = (U}j)TUj‘%

is the Cabibbo-Kobayashi-Maskawa matrix, origin of flavour mixing in the
SM — | G.Wilkinson’s lectures




LHC Run 1+Run 2: first measurements of Higgs couplings
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[ATLAS-CONF-2019-005]

1

Higgs couplings to gauge bosons measured to 10-15% level.

Higgs couplings to 3"*-generation fermions measured at 20-30% level.

1

1

First bound on Higgs self-coupling (kx = A3/A3")
—11.8 < kx < 18.8 (95%CL) [CMS, PRL 122, 121803]
—5.0 < kx <120 (95%CL) [ATLAS, arXiv:1906.02025]



SM Higgs-boson decay branching ratios and width
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These curves include: | tree level | + | QCD and EW loop corrections |.

e Can you make sense of these plots?

e You have all the building blocks to calculate them! How do your results

compare with the plots above?
e You can also use automated tools (see e.g. HDECAY, and its extensions).

e Observe difference between light and heavy Higgs.



