Higgs Physics - Theory Lecture 3

From Higgs-boson properties to new physics

Laura Reina

CERN-Fermilab HCP Summer School, CERN, August, 29 2019

• Lecture 1: the Standard-Model Higgs boson.

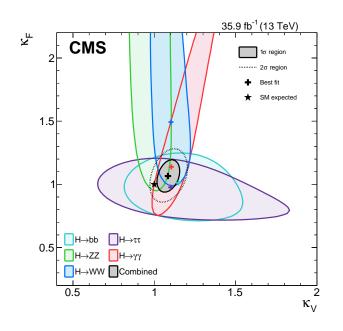
- → EW gauge symmetry, Higgs mechanism.
- \hookrightarrow Higgs-boson interactions.
- \hookrightarrow Quantum constraints.

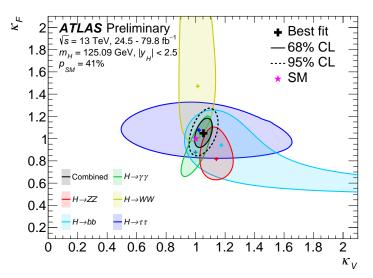
• Lecture 2: Higgs-boson physics at the LHC.

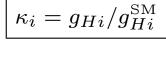
- \hookrightarrow Production and decay modes, what do they probe.
- \hookrightarrow Theoretical predictions and their accuracy.

• Lecture 3: from Higgs-boson properties to new physics.

- \hookrightarrow Probing specific extensions of the SM.
- → Probing classes of interactions within SM boundaries.

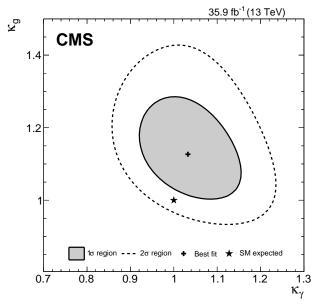

EW+Higgs precision physics in the LHC era: What does it imply for theory?

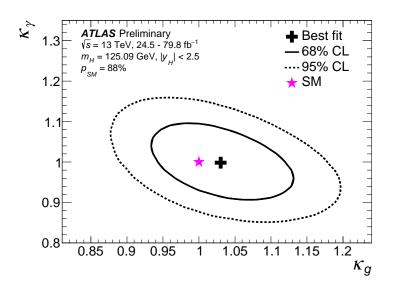

Q1: How accurate? \hookrightarrow See yesterday's lecture.


Q2: How to interpret deviations from SM prediction?

- NP can just rescale the Higgs-boson couplings: $\kappa_i = g_{Hi}/g_{Hi}^{SM}$: only limited scope.
- NP can introduce new structures in Higgs couplings: how to explore?
 - → Model-specific approach: more stringent, yet arbitrary.
 - → Effective Field Theory approach: less arbitrary, systematic, but less prone to simple prescriptions.
 - \hookrightarrow We may <u>need both</u> ...

Constraining NP via deviations from SM Higgs-boson couplings: rescaling factors (κ_i)





 $\kappa_V \to {\rm all} \ g_{HV}$

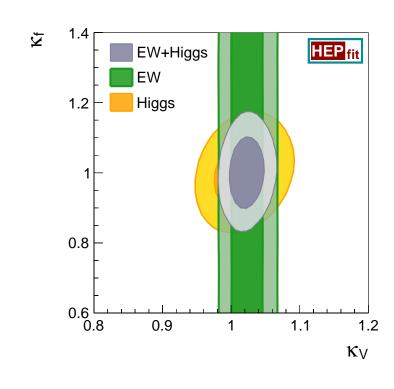
 $\kappa_f \to \text{all } g_{Hf}$

Constraining κ_i from Higgs data+EWPO

Example:

$$\kappa_V \to \text{all } g_{HV}$$
 $\kappa_f \to \text{all } g_{Hf}$

Higgs only


	68%	95%	correlation
$\overline{\kappa_V}$	1.02 ± 0.03	[0.97, 1.08]	1.00
κ_f	0.98 ± 0.07	[0.84, 1.12]	0.24 1.00

Higgs+EWPO

	68%	95%	correl	ation
κ_f	1.00 ± 0.06	[0.88, 1.12]	0.14	1.00

$$\sigma_i = \sigma_i^{\text{SM}} + \delta \sigma_i$$
$$\Gamma_j = \Gamma_j^{\text{SM}} + \delta \Gamma_j$$

\longrightarrow Main effect on κ_V

 $\sigma_i^{\rm SM}, \, \Gamma_j^{\rm SM} \to {\rm from~ Higgs~ XS~ WG~ (CERN~ Yellow~ Report, arXiv:1610.07922)}$ $\delta\sigma_i \to {\rm using~ Madgraph~ + K-factors~ (from~ Higgs~ XS~ WG)}$ $\delta\Gamma_j \to {\rm eHdecay~ [Contino~ et~ al.,~ arXiv:1403.3381]}$

Constraining NP via SM Effective Field Theory

Extension of the SM Lagrangian by d > 4 operators

$$\mathcal{L}_{\mathrm{SM}}^{\mathrm{eff}} = \mathcal{L}_{\mathrm{SM}} + \sum_{d>4} \frac{1}{\Lambda^{d-4}} \mathcal{L}_d = \mathcal{L}_{\mathrm{SM}} + \frac{1}{\Lambda} \mathcal{L}_5 + \frac{1}{\Lambda^2} \mathcal{L}_6 + \cdots$$

where

$$\mathcal{L}_d = \sum_i C_i \mathcal{O}_i, \quad [\mathcal{O}_i] = d,$$

considering:

- \rightarrow one Higgs doublet of $SU(2)_L$, linearly realized SSB
- \rightarrow no \mathcal{L}_5 (only one operator affecting neutrino masses)
- \rightarrow **d** = **6 operators only**, obeying SM gauge symmetry, L and B conservation \hookrightarrow expansion in $(p, v)/\Lambda$
 - \hookrightarrow truncation at linear order $\to O((p,v)^2/\Lambda^2)$ to be verified a posteriori.

and requiring:

- → flavour universality: 59 operators
 [basis by Grzadkowski et al., JHEP 1010 (2010) 085 → Warsaw basis]
- → CP even operators only, with at least one Higgs: 27 operators
- → only operators contributing to the observables considered.

$$\mathcal{O}_{\phi G} = (\phi^{\dagger} \phi) G_{\mu\nu}^{A} G^{A\mu\nu}$$

$$\mathcal{O}_{\phi W} = (\phi^{\dagger} \phi) W_{\mu\nu}^{I} W^{I\mu\nu}$$

$$\mathcal{O}_{\phi B} = (\phi^{\dagger} \phi) B_{\mu\nu} B^{\mu\nu}$$

$$\mathcal{O}_{\phi W B} = (\phi^{\dagger} \tau^{I} \phi) W_{\mu\nu}^{I} B^{\mu\nu}$$

$$\mathcal{O}_{\phi D} = (\phi^{\dagger} D^{\mu} \phi)^{*} (\phi^{\dagger} D_{\mu} \phi)$$

$$\mathcal{O}_{\phi \Box} = (\phi^{\dagger} \phi)^{*} \Box (\phi^{\dagger} \phi)$$

$$\mathcal{O}_{\phi L}^{(1)} = (\phi^{\dagger} i \overleftrightarrow{D}_{\mu} \phi) (\overline{L} \gamma^{\mu} L)
\mathcal{O}_{\phi L}^{(3)} = (\phi^{\dagger} i \overleftrightarrow{D}_{\mu}^{I} \phi) (\overline{L} \tau^{I} \gamma^{\mu} L)
\mathcal{O}_{\phi e}^{(3)} = (\phi^{\dagger} i \overleftrightarrow{D}_{\mu} \phi) (\overline{e}_{R} \gamma^{\mu} e_{R})
\mathcal{O}_{\phi Q}^{(1)} = (\phi^{\dagger} i \overleftrightarrow{D}_{\mu} \phi) (\overline{Q} \gamma^{\mu} Q)
\mathcal{O}_{\phi Q}^{(3)} = (\phi^{\dagger} i \overleftrightarrow{D}_{\mu}^{I} \phi) (\overline{Q} \tau^{I} \gamma^{\mu} Q)
\mathcal{O}_{\phi u}^{(3)} = (\phi^{\dagger} i \overleftrightarrow{D}_{\mu} \phi) (\overline{u}_{R} \gamma^{\mu} u_{R})
\mathcal{O}_{\phi d}^{(3)} = (\phi^{\dagger} i \overleftrightarrow{D}_{\mu} \phi) (\overline{d}_{R} \gamma^{\mu} d_{R})$$

bosonic operators

- \longrightarrow corrections to:
 - oblique parameters (in red)
 - \bullet HVV \longrightarrow κ_V
 - WWZ and $WW\gamma$

single-fermionic-vector-current operators

- \longrightarrow corrections to:
 - $Vf\bar{f}$ (in blue)
 - $HVf\bar{f}$

$$\mathcal{O}_{e\phi} = (\phi^{\dagger}\phi)(\bar{L}\,e_R\phi)$$

$$\mathcal{O}_{u\phi} = (\phi^{\dagger}\phi)(\bar{Q}\,u_R\widetilde{\phi})$$

$$\mathcal{O}_{d\phi} = (\phi^{\dagger}\phi)(\bar{Q}\,d_R\phi)$$

single-fermionic-scalar-current operators

 \longrightarrow corrections to:

- Yukawa couplings
- $\bullet \ Hf\bar{f} \ \longrightarrow \ \kappa_f$

four-fermion operator

$$\mathcal{O}_{LL} = (\bar{L}\gamma^{\mu}L)(\bar{L}\gamma^{\mu}L)$$

 \longrightarrow corrections to:

• G_F extraction from μ decay

bosonic operator, no ϕ

$$\mathcal{O}_W = \epsilon^{IJK} W_{\mu}^{I\nu} W_{\nu}^{J\rho} W_{\rho}^{K\mu}$$

 \longrightarrow corrections to:

• gauge self-interactions

Notice:

Only highlighted operators (10) enters EWPO, and only 8 combinations can be constrained \longrightarrow "flat directions"

Where effective operators matter

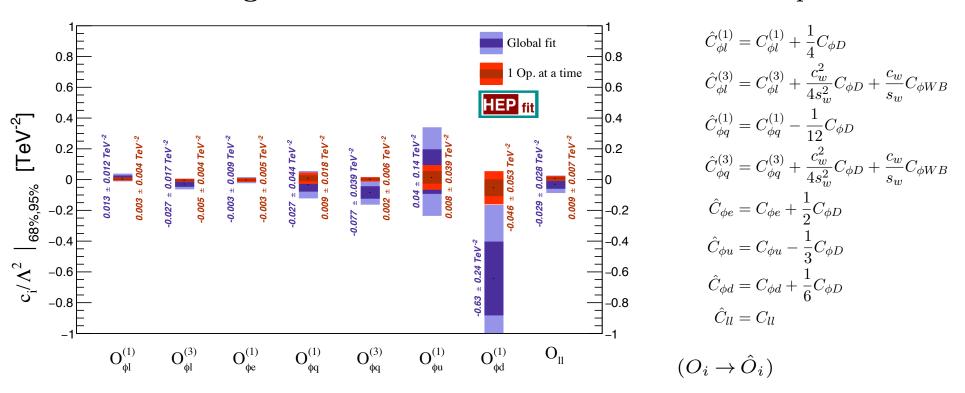
They shift masses and couplings in \mathcal{L}_{SM} and introduce new interactions.

Example: Consider $O_{\phi D}$ and $O_{\phi \square}$. Upon SSB (unitary gauge):

$$O_{\phi D} = (\phi^{\dagger} D^{\mu} \phi)^{*} (\phi^{\dagger} D_{\mu} \phi) =
\frac{v^{2}}{4} \left(1 + \frac{eH}{v} + \frac{H^{2}}{v^{2}} \right) (\partial^{\mu} H)(\partial_{\mu} H) + \frac{g^{2} v^{4}}{16c_{W}^{2}} Z^{\mu} Z_{\mu} \left(1 + \frac{4H}{v} + \frac{6H^{2}}{v^{2}} + \frac{4H^{3}}{v^{3}} + \frac{H^{4}}{v^{4}} \right)
O_{\phi \Box} = (\phi^{\dagger} \phi)^{*} \Box (\phi^{\dagger} \phi) = -(v^{2} + 4vH + 4H^{2})(\partial^{\mu} H)(\partial_{\mu} H)$$

New interactions: $H(\partial^{\mu}H)(\partial_{\mu}H)$, $H^{2}(\partial^{\mu}H)(\partial_{\mu}H)$, ... (notice: $\rightarrow p$ -dependence) and they both affect the H kinetic term \rightarrow normalize it by shifting the H field:

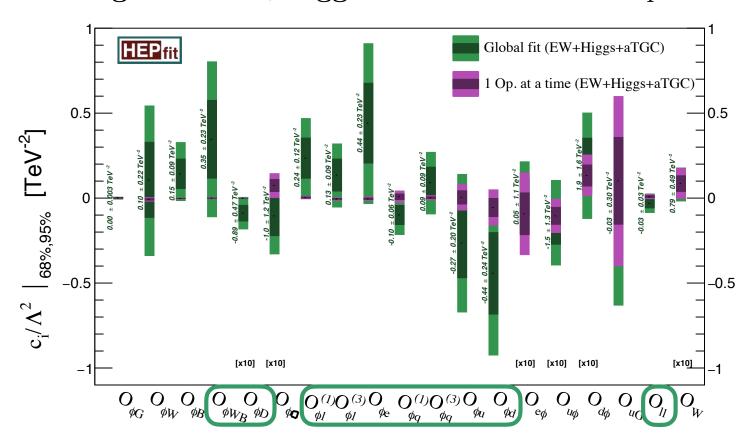
$$H = H' \left(1 - \frac{1}{4} \hat{C}_{HD} + \hat{C}_{H\Box} \right)$$


where $\hat{C}_i = C_i v^2 / \Lambda^2$. This shift affects the HVV and $Hf\bar{f}$ vertices, and the Higgs mass, now be given by:

$$M_H^2 = 2\lambda v^2 \left(1 - \frac{3}{2\lambda} \hat{C}_H - \frac{1}{2} C_{HD} + 2\hat{C}_{H\Box} \right)$$

Notice: $O_H = (\phi^{\dagger}\phi)^3$ affects $V(\phi) (\to M_H^2)$. Not among the listed operators since its effect can be observed only by the measurement of both M_H and λ .

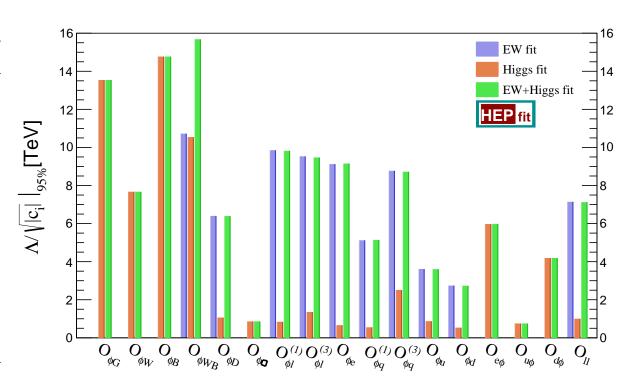
Towards Global Fits of d=6 interactions


→ Combined global EW fit of 8 combinations of dim=6 operators.

[J. de Blas, talk at Lepton-Photon 2019]

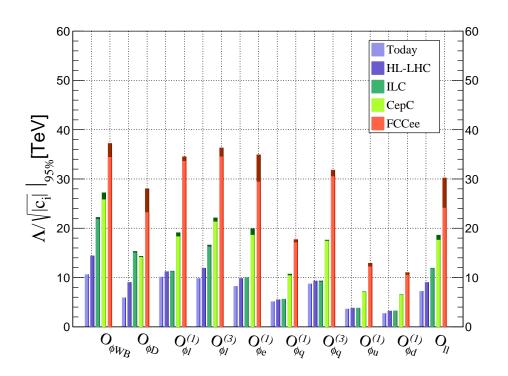
Large difference between global and individual bounds \rightarrow Large correlations

→ Combined global EW+Higgs fit of extended set of operators

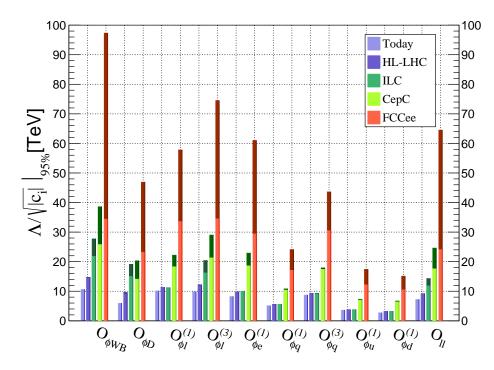

[J. de Blas, talk at Lepton-Photon 2019]

- → Lifted degeneracy among EWPO operators.
- \hookrightarrow Large difference between global and individual bounds \to Large correlations
- \hookrightarrow Studies should **aim for global fit** of all necessary operators.
- → Increasing precision can boost effectiveness in constraining new physics.

Bounds on operators can be translated in bounds on Λ_{NP}


→ Extended set of operators, switching on **one operator at a time**

Coefficient	95% prob. range	95% prob. lower bound
	$C_i/\Lambda^2 \ [{ m TeV}^{-2}]$	on Λ [TeV] $(C_i = 1)$
$C_{\phi G}$	[-0.00029, 0.0059]	13.5
$C_{\phi W}$	[-0.019, 0.0040]	7.63
$C_{\phi B}$	[-0.0051, 0.0011]	14.7
$C_{\phi WB}$	[-0.0045, 0.0038]	15.7
$C_{\phi D}$	[-0.027, 0.00092]	6.38
$C_{\phi}\square$	[0.015, 1.4]	0.85
$C_{\phi L}^{(1)}$	[-0.0052, 0.012]	9.81
$C_{\phi L}^{(3)}$	[-0.013, 0.0030]	9.46
$C_{\phi e}^{(1)} \ C_{\phi Q}^{(1)} \ C_{\phi Q}^{(3)}$	[-0.015, 0.0070]	9.14
$C_{\phi Q}^{(1)}$	[-0.027, 0.043]	5.13
$C_{\phi Q}^{(3)}$	[-0.0111, 0.015]	8.71
$C_{\phi u}$	[-0.072, 0.082]	3.59
$C_{\phi d}$	[-0.16, 0.050]	2.72
$C_{e\phi}$	[-0.034, 0.015]	5.97
$C_{u\phi}$	[-2.0, -0.050]	0.74
$C_{d\phi}$	[0.0031, 0.061]	4.18
C_{LL}	[-0.0048, 0.022]	7.11

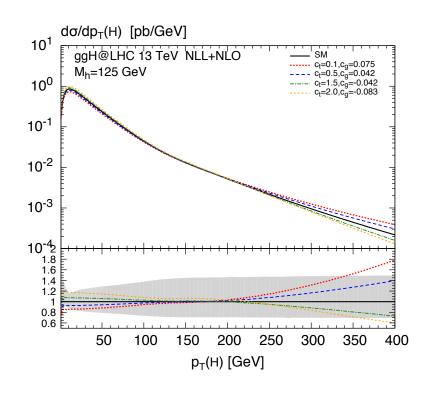


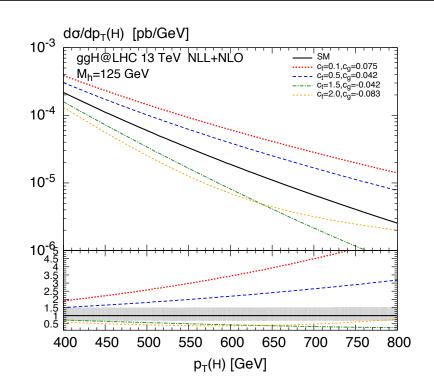
- EWPO constraints still more stringent: **Higgs bounds** \leq **EWPO bounds**
- Increasing precision in constraining the C_i can greatly boost the reach in $\Lambda!$
 - → Need to incrementally move towards more **global fits**.
 - → Need to use **more observables**: Higgs kinematic distributions, EW triple-gauge-coupling measurements, . . .
 - \hookrightarrow incrementally **release flavour universality** \rightarrow *t*-quark observables (b, τ) .
 - \hookrightarrow Include NLO QCD/EW corrections and running of C_i .
 - → Explore validity of linear vs quadratic approximation : is it consistent?

Projected bounds for Λ at future colliders

with/without theoretical errors

with/without theoretical and parametrical errors

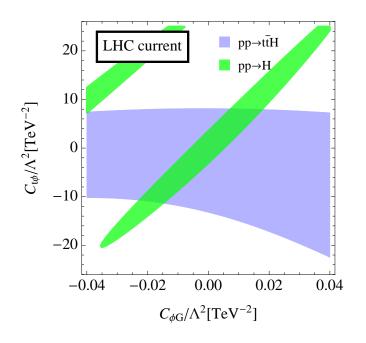

\hookrightarrow Most recent study:

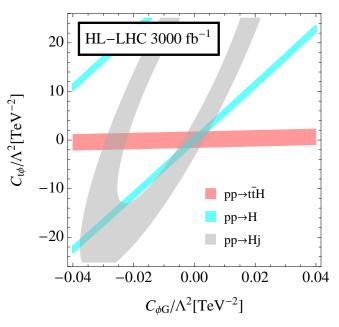

J. de Blas et al., Higgs boson studies at future particle colliders, arxiv:1905.03764 prepared for the

"Symposium on the Update of the European Strategy for Particle Physics", Granada, May 13-16 2019.

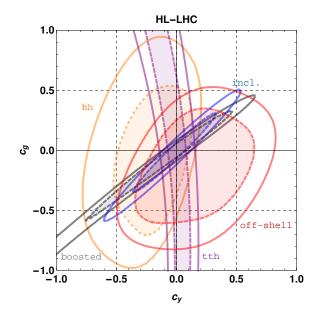
Effect of new interactions: Higgs p_T in $gg \to H$

Not visible in the inclusive cross sections, but in the shape of distributions.




[Grazzini et al., arXiv:1612.00283]

$$O_{\phi G} = (\phi^{\dagger} \phi) G^{a}_{\mu\nu} G^{a.\mu\nu} \longrightarrow \frac{\alpha_{s}}{\pi v} c_{g} h G^{a}_{\mu\nu} G^{a.\mu\nu} \leftarrow O_{u\phi} = (\phi^{\dagger} \phi) \bar{Q}_{L} u_{R} \tilde{\phi} \longrightarrow \frac{m_{t}}{v} c_{t} h t \bar{t} \leftarrow O_{u\phi} = (\phi^{\dagger} \phi) \bar{Q}_{L} u_{R} \tilde{\phi} \longrightarrow O_$$


Include $O_{\phi G}$ and $O_{u\phi}$ in NLO+NLL computation: simultaneous effects of two or more operators affects high-energy tail of the spectrum.

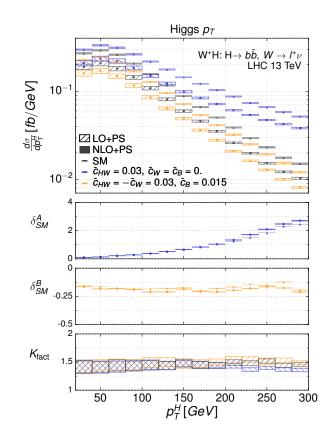
Probing the gluon-Higgs vs top-Higgs interactions

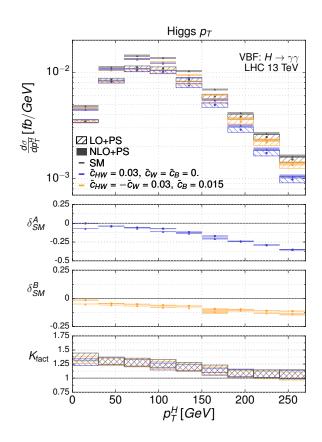
[Maltoni et al., arXiv:1607.05330]

Combining:

inclusive H

ttH

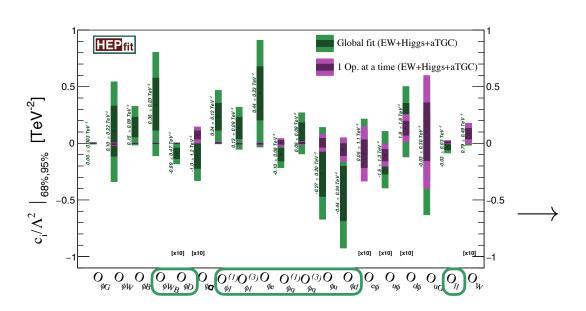

HH


boosted H

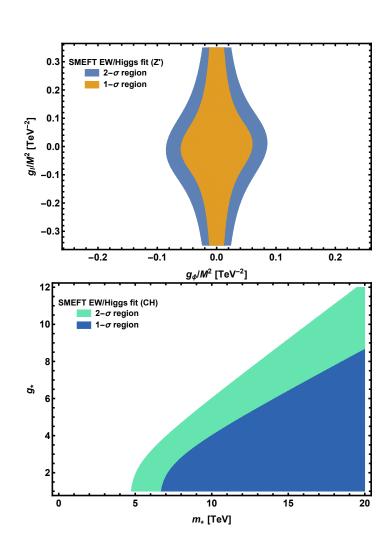
off-shell H

[Azatov et al., arXiv:1608.00977]

Effect of new interactions: Higgs p_T in VH and VBF

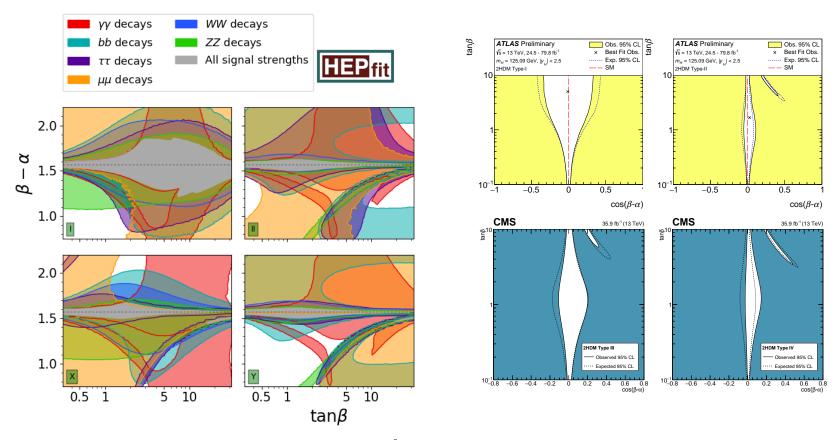


[Degrande et al., arXiv:1609.04833]


- → Includes NLO QCD matched to PS, validated with both MG5aMC@NLO and POWHEG-BOX.
- \hookrightarrow Question: consistency of EFT.

From SM-EFT to specific models

Specific model $\rightarrow \{O_i\}$ \longrightarrow bounds on $\{C_i\}$ \rightarrow bounds on the mode



[J. de Blas, talk at Lepton-Photon 2019]

Broad spectrum of searches, old and new ideas

2HDM: natural extension, MSSM motivated, FC scalar currents

[Eberhardt, Chowdhury, arXiv:1711.02095]

Favor alignement scenario \longrightarrow consistent with SM-like couplings and EWPO Towards a **decoupling scenario**: $M_h \ll M_H, M_A, M_{H^{\pm}}$, i.e. spectrum of very heavy scalars.

2HDM - Type II, MSSM-like, quick guide

Two complex $SU(2)_L$ doublets, with hypercharge $Y = \pm 1$:

$$\Phi_u = \begin{pmatrix} \phi_u^+ \\ \phi_u^0 \end{pmatrix} , \quad \Phi_d = \begin{pmatrix} \phi_d^0 \\ \phi_d^- \end{pmatrix}$$

and (super)potential (Higgs part only):

$$V_{H} = (|\mu|^{2} + m_{u}^{2})|\Phi_{u}|^{2} + (|\mu|^{2} + m_{d}^{2})|\Phi_{d}|^{2} - \mu B\epsilon_{ij}(\Phi_{u}^{i}\Phi_{d}^{j} + h.c.)$$

$$+ \frac{g^{2} + g'^{2}}{8}(|\Phi_{u}|^{2} - |\Phi_{d}|^{2})^{2} + \frac{g^{2}}{2}|\Phi_{u}^{\dagger}\Phi_{d}|^{2}$$

The EW symmetry is spontaneously broken by choosing:

$$\langle \Phi_u \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_u \end{pmatrix} , \quad \langle \Phi_d \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} v_d \\ 0 \end{pmatrix}$$

normalized to preserve the SM relation: $M_W^2 = g^2(v_u^2 + v_d^2)/4 = g^2v^2/4$.

$$M_W^2 = g^2(v_u^2 + v_d^2)/4 = g^2v^2/4$$

Five physical scalar/pseudoscalar degrees of freedom:

$$h^{0} = -(\sqrt{2}\operatorname{Re}\Phi_{d}^{0} - v_{d})\sin\alpha + (\sqrt{2}\operatorname{Re}\Phi_{u}^{0} - v_{u})\cos\alpha$$

$$H^{0} = (\sqrt{2}\operatorname{Re}\Phi_{d}^{0} - v_{d})\cos\alpha + (\sqrt{2}\operatorname{Re}\Phi_{u}^{0} - v_{u})\sin\alpha$$

$$A^{0} = \sqrt{2}\left(\operatorname{Im}\Phi_{d}^{0}\sin\beta + \operatorname{Im}\Phi_{u}^{0}\cos\beta\right)$$

$$H^{\pm} = \Phi_{d}^{\pm}\sin\beta + \Phi_{u}^{\pm}\cos\beta$$

where $\tan \beta = v_u/v_d$.

All masses can be expressed (at tree level) in terms of $\tan \beta$ and M_A :

$$M_{H^{\pm}}^2 = M_A^2 + M_W^2$$

$$M_{H,h}^2 = \frac{1}{2} \left(M_A^2 + M_Z^2 \pm \left((M_A^2 + M_Z^2)^2 - 4M_Z^2 M_A^2 \cos^2 2\beta \right)^{1/2} \right)$$

Notice: tree level upper bound on M_h : $M_h^2 \le M_Z^2 \cos 2\beta \le M_Z^2$!

Higgs boson couplings to SM gauge bosons:

Some phenomenologically important ones:

$$g_{hVV} = g_V M_V \sin(\beta - \alpha) g^{\mu\nu}$$
 , $g_{HVV} = g_V M_V \cos(\beta - \alpha) g^{\mu\nu}$

where $g_V = 2M_V/v$ for V = W, Z, and

$$g_{hAZ} = \frac{g\cos(\beta - \alpha)}{2\cos\theta_W} (p_h - p_A)^{\mu} , \quad g_{HAZ} = -\frac{g\sin(\beta - \alpha)}{2\cos\theta_W} (p_H - p_A)^{\mu}$$

Notice:
$$g_{AZZ} = g_{AWW} = 0$$
, $g_{H^{\pm}ZZ} = g_{H^{\pm}WW} = 0$

Decoupling limit:
$$M_A \gg M_Z \longrightarrow \begin{cases} M_h \simeq M_h^{max} \\ M_H \simeq M_{H^{\pm}} \simeq M_A \end{cases}$$

$$\cos^2(\beta - \alpha) \simeq \frac{M_Z^4 \sin^2 4\beta}{M_A^4} \longrightarrow \begin{cases} \cos(\beta - \alpha) \to 0\\ \sin(\beta - \alpha) \to 1 \end{cases}$$

The only low energy Higgs is $h \simeq H_{SM}$.

Higgs boson couplings to quarks and leptons:

Yukawa type couplings, Φ_u to up-component and Φ_d to down-component of $SU(2)_L$ fermion doublets. Ex. (3rd generation quarks):

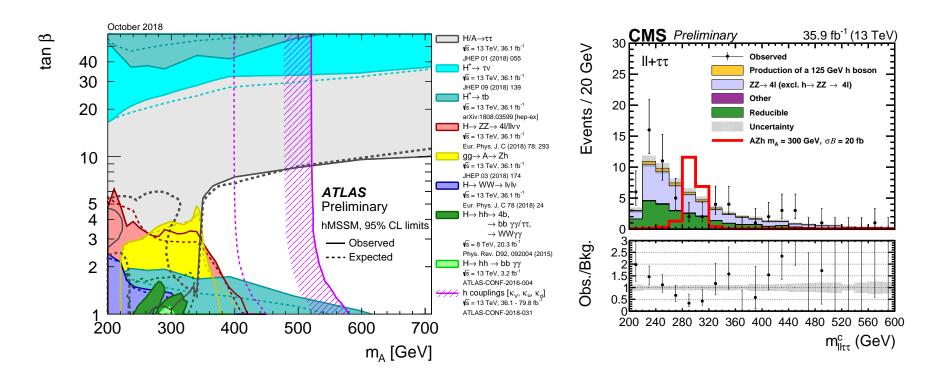
$$\mathcal{L}_{Yukawa} = h_t \left[\bar{t} P_L t \Phi_u^0 - \bar{t} P_L b \Phi_u^+ \right] + h_b \left[\bar{b} P_L b \Phi_d^0 - \bar{b} P_L t \Phi_d^- \right] + \text{h.c.}$$

and similarly for leptons. The corresponding couplings can be expressed as $(y_t, y_b \to SM)$:

$$g_{ht\bar{t}} = \frac{\cos \alpha}{\sin \beta} y_t = \left[\sin(\beta - \alpha) + \cot \beta \cos(\beta - \alpha)\right] y_t$$

$$g_{hb\bar{b}} = -\frac{\sin \alpha}{\cos \beta} y_b = \left[\sin(\beta - \alpha) - \tan \beta \cos(\beta - \alpha)\right] y_b$$

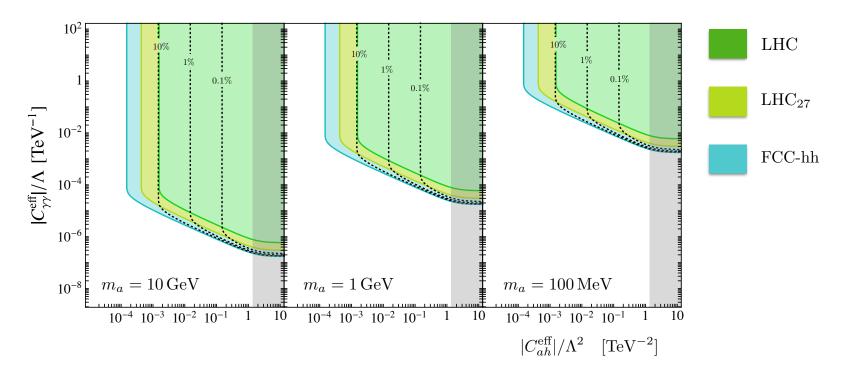
$$g_{Ht\bar{t}} = \frac{\sin \alpha}{\sin \beta} y_t = \left[\cos(\beta - \alpha) - \cot \beta \sin(\beta - \alpha)\right] y_t$$


$$g_{Hb\bar{b}} = \frac{\cos \alpha}{\cos \beta} y_b = \left[\cos(\beta - \alpha) + \tan \beta \sin(\beta - \alpha)\right] y_b$$

$$g_{At\bar{t}} = \cot \beta y_t , g_{Ab\bar{b}} = \tan \beta y_b$$

$$g_{H\pm t\bar{b}} = \frac{g}{2\sqrt{2}M_W} \left[m_t \cot \beta (1 + \gamma_5) + m_b \tan \beta (1 - \gamma_5)\right]$$

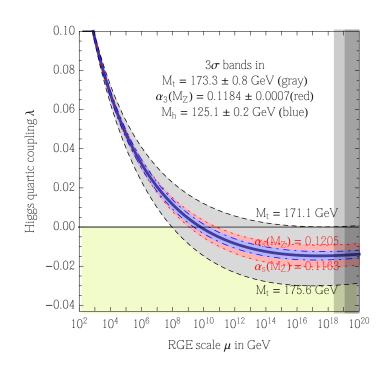
Notice: consistent decoupling limit behavior.

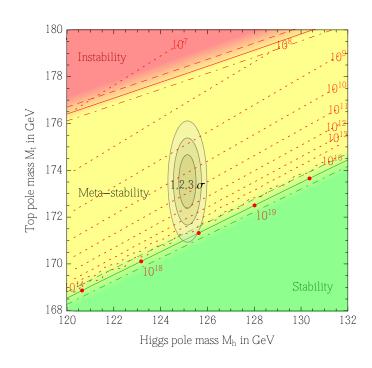

Heavy-scalar and charged-scalar searches further explore parameter space.

More exotic scenarios

- Higgs FCNC decays $(H \to e\tau, H \to \mu\tau, t \to Hc, \ldots)$
- Higgs decays to BSM gauge bosons $(U(1)_{\text{dark}})$
- Higgs decays to light scalars $(H \to aa, a = \text{axion-like particle or ALP})$

Axion-like particles (ALP)


[Bauer et al., arXiv:1808.10323]


ALP: pseudo-Goldstone bosons of SB global symmetry (NP at scale Λ) $\hookrightarrow \underline{light}$ pseudoscalar messangers of NP

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \mathcal{L}_{\text{a}} + \dots + \frac{C_{\gamma\gamma}}{\Lambda} a F^{\mu\nu} \tilde{F}_{\mu\nu} + \dots + \frac{C_{ah}}{\Lambda^2} (\partial^{\mu} a)(\partial_{\mu} a) \phi^{\dagger} \phi + \frac{C_{aZ}}{\Lambda^3} (\partial^{\mu} a)(\phi^{\dagger} i D_{\mu} \phi) \phi^{\dagger} \phi + \dots$$

LHC gives access in particular to: $H \to Za \to l^+l^-2\gamma$ and $H \to aa \to 4\gamma$ \hookrightarrow models with extra singlet-scalar very important templates for future collider studies! [see e.g, Heinemann and Nir, arXiv:1905.00382]

Could new physics be beyond reach?

Buttazzo et al., arXiv:1307.3536

Including quantum effects in the study of the Higgs potential, for $M_h \approx 125 \text{ GeV}$, a condition of **criticality** $(\lambda \to 0)$ is **reached for** $\Lambda \approx 10^{10} - 10^{12} \text{ GeV}$.

Is this a signal of NP below the Planck scale?

Outlook

- After the discovery of the Higgs-boson during Run I of the LHC, a major effort to develop a full-fledged precision program to measure its couplings has been growing.
- Indirect evidence of new physics from Higgs-boson and EW precision measurements could come from the synergy between
 - \rightarrow accurate theoretical prediction,
 - → a systematic approach to the study of new effective interactions,
 - → the intuition and experience of many years of Beyond SM searches!
- Increasing the precision of input parameters could allow to test higher scales of new physics: a factor of 10 in precision could give access to scales as high as 100 TeV.
- **Direct evidence** of new physics will boost this process, as the discovery of a Higgs-boson has prompted and guided us in this new era of LHC physics.
- Even **no new discovery** and just **indirect evidence** would mean a lot!