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Particle physics in the LHC era: a unique time
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Many years of HL running ahead of us!

So much of the LHC physics potential is ahead of us:

— c.o.m. energy will increase from 13 TeV to 14 TeV.
— 2-fold increase in statistics by the end of Run 3.
20-fold increase in statistics by the end of the HL-LHC!



The LHC era: Exploring the TeV scale

e LHC Run 1: the Higgs discovery has been a game changer.

e LHC Run 2: a wealth of new measurements.

> Improved precision measurements of SM processes, total and differential rates.
> Entering the era of precision Higgs physics.

> More stringent bounds on new physics scenarios.

e The LHC Run 3 and the HL-LHC are a reality.

e Updated scenarios for future colliders are being proposed based on LHC

results, HL-LHC projections, and theory recommendations.

e Intriguing results coming from rare processes, flavour physics,

cosmology, ... can give important indications.

With no evidence of new physics or a preferred way beyond the Standard
Model progress crucially relies on our ability to discern, describe,

and interpret the complexity of LHC events.



Higgs physics has been at the core of the LHC physics program
and will continue to be so for Run 3 and the HL-LHC upgrade, as well as
for all future colliders currently under discussion.

— Measuring anomalies in SM Higgs properties (couplings, CP, ...).

— Searching for new signatures (anomalous interactions, exotic decays, new

particles, ...).

< | See ATLAS and CMS talks

The role of theory is very challenging

— Posing the right questions!
— Setting the SM framework unambiguously.
— Recognizing and interpreting new phenomena

— Model-specific approach: more stringent, yet arbitrary.

—» Effective Field Theory approach: less arbitrary, more systematic,
but less prone to a simple, direct interpretation.

Several contributions presented at this meeting

See talks by Craig, Gori, Mantani, Michel, Pages,

Pellen, Plehn, Ramos, Ravasio, Tong, ..




Key Question: What is the origin of the EW scale?

The Higgs discovery has posed us some fundamental questions

and given us a unique handle on BSM physics.

e Why the Mg < M), hierarchy problem? What are the implications for
Naturalness? (— Naturalness strategy)

e (Can we uncover the nature of UV physics from precision Higgs measurements?

(— Elementary vs composite? Yukawa force?” One/more Higgses?)
e Can Higgs physics gives us insight into flavor physics and vice versa?
e Can we measure the shape of the Higgs potential?

e Can Higgs physics point us to new physics that could also explain the nature

of dark matter and the origin of baryogenesis?

— | See Craig’s, Pages’s, and Plehn’s talks

Pursuing these theory-motivated benchmarks will shape our

investigation and understanding of BSM physics.



Setting the SM framework

LHC Run 14+Run 2: My promoted to EW precision observable

L L B B A B Crucial to realize the EW precision
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Effects of New Physics can now be more clearly disentangled in both EW
observables and Higgs-boson couplings <— | probing EWSB




LHC Run 14+Run 2: first measurement of SM Higgs couplings
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[CMS, JHEP 01 (2021) 148] [ATLAS-CONF-2020-027]
< Higgs couplings to gauge bosons measured to 5-10% level.
< Higgs couplings to 3"¢-generation fermions measured at 10-20%
. . . d . .
«— First measurement of Higgs couplings to 2"“-generation fermions: «,,!
> Projections for HL-LHC look impressive!
— Next challenge: probe new structures! (EFT interactions, CP ...)
— Ultimate challenge: measuring the Higgs self-coupling(s).



Exploring CP-violation in Higgs couplings

< | See Gori’s talk

If the Higgs has CP violating couplings: LD —7 I‘vf ff+ 2‘f7‘5f

for example from
dim 6 operators:
]\/IolHl GLHBR
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€ € electron EDM bound ‘

- To achieve a gauge invariant result,
S : one needs to add diagrams like:
co © i UV-divergent.

: Problem of EFT approach
Altmannshofer, SG, Hamer, Patel, 2009.01258

For the first time computed in
Altmannshofer et al, 1503.04830




A concrete Example: a complex 2HDM

Example benchmark: Altmannshofer, SG, Hamer, Patel, 2009.01258
Type 1 Type II
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The ultimate challenge: measuring the Higgs potential

From double/single Higgs production
(cannot rely on large m; approx.)

(Borowka et al.,

g

Q

From indirect effects (Degrassi et al.,
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Higgs self-coupling(s) <+ EWSB

— Double vs single H production?
~ Indirect measurement?

— Can we measure both A3 and \47

Odds can change by exploring all ideas!



Higgs self-coupling

Higgs self-coupling and baryogenesis

— Sakharov conditions

baryon number violation

C and CP violation
departure from thermal equilibrium — 1st-order e-w phase transition

- D6'H|ggS potential [Grojean, Servant, Wells]
general potential [Reichert, Eichhorn, Gies, Pawlowski, TP, Scherer]
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< | See Plehn’s talk




A unique physics program in front of us!

From Run 2 data: not only total but also differential cross sections.
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We can explore new physics in different regimes.

Is theory ready to take the challenge?



Theoretical systematics: warning of a possible limiting factor
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LHC: Large Theory systematics
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Breakdown of residual uncertainties:

Vs = 14 TeV, 3000 fb™' per experiment

[ ] Total ATLAS and CMS
— Statistical HL-LHC Projection
—— Experimental
—— Theory Uncertainty [%]
2 4 Tot Stat Exp Jh,
LS ="0 1.8 08 1013
Ky =B 17 08 07]13
K E 15 07 06[12
Kg ;] 25 09 08|21
LN =S 34 09 11|31
Kp F=— l 3.7 13 13|32
K, = 1.9 09 08|15
LT = 43 38 10[17
Kz B= |98 72 17(84)
0 002 004 006 008 01 012 0.14

Expected uncertainty

HL-LHC (S2: Theory syst. half of LHC)
Error dominated by Theory systematics

Ii:g?])\; :1+AK—)AK,FL‘O(2>
IH X A

— Higher precision probes higher A

pATLAS = 1.06 4 0.07 = 1.06 & 0.04(stat.) 4= 0.03(exp.) T 05 (sig.th.) + 0.02(bkg.th.)

pems = 1.0

+0.07
2—0.06

— 1.02 + 0.04(stat.) & 0.04(exp.)+0.04(th.)

— | See talks by Bonanomi and Zhou




With no evidence of new physics or a preferred way beyond the Standard
Model, but compelling arguments to explore the TeV scale,
progress crucially relies on our ability to discern, describe, and

interpret the complexity of LHC events.



What does complexity mean for theory?

Embracing complexity in modelling and interpreting LHC events.

e Push precision for standard candles and improve description of key processes.

e Higher-order perturbative QCD and EW corrections.

e N2LO QCD for all processes (total rates and distributions) and N®LO QCD for
keystone processes (g9 — H, pp — ’y*/Z/Wi,...).

e NLO EW+QCD corrections for all processes.

e Improved PDF (>NLO QCD, QED)

¢ Resummation of specific kinematic- or cut-induced large (logarithmic)
corrections needs to be included.

e Effects previously neglected need to be reconsidered (mass effects, ...).

e NNLO-+PS matching to parton-shower Monte Carlo event generators

e Extended precision to high-multiplicity processes.

e Include accurate modelling of final-state decays.
e Study off-shell effects.

e Non-pertubative effects.

e Use cutting-edge techniques to extract more information from otherwise
difficult data.

e Precursor: jet substructure.
e New approach to QCD dynamics via ML/DL techniques.
e ML/AT algorithms to select difficult signals.



e Parametrize new physics in terms of more general effective interactions.
e Parametrize BSM via EFT extension of SM Lagrangian.
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2
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Constrain parameter space via SM fits and direct search results.
Connect to flavour physics within usual EFT language (SMEFT — WET).
Account for NP effects at all levels (signal, background, PDF fits, ...)
Interpret patterns by connecting to specific benchmark models.
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Extend precision to high multiplicity processes and fiducial

signatures.



Double Higgs production

via VBF at the LHC

— | See Pellen’s talk

pp — HHjj
manly VBF but also VHH — HHjj

e¢ VBF and VHH — HHjj at NLO QCD+EW
e VBF-only approximation at NNLO QCD+NLO QED

T
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T
LO —i
NNLO-QCD+NLO-EW

Effect of VBF approximation up
to 20%.
e EW Sudakov logarithms in tails

of distributions: -25%.

e EW corrections comparable to
QCD ones.
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NLO-+PS generator for gg - H — V'V including non-resonant and
off-shell effects

< | See Ravasio’s talk
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Invariant (transverse) mass of the VV system left unchanged by the parton shower. The relative
size of the signal and of its with the QCD background increases in the tail.

e Contribute at NNLO QCD to pp — VV — 4l

e QCD background is dominant and cannot be distinguished from the signal.

e Sensitive to H — V'V

e Offshell Higgs cross section important to determine I'y << detector resolution.

e Implemented in POWHEG BOX RES, with V leptonic decays.



Fiducial predictions for g9 - H — vy at 3 loops
— | See Michel’s talk

e Inclusive cross section known at N3LO (Anastasiou et al.)
e But LHC experiments apply kinematic selection cuts on Higgs decay products.

e Need complete interplay of QCD corrections and O(1) fiducial acceptance.
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e Consider g9 — H — ~v with ATLAS fiducial cuts (on p,. and eta”).
e Computed fiducial spectrum for qr = pg = p;ﬂ at N3LL'4+N3LO.

e Computed total fiducial cross section at N3LO, improved by resummation.



Use cutting-edge techniques to extract more information from
otherwise difficult data.



bbH: direct measurement of y;, obfuscated by several SM

backgrounds

NLO QCD+EW corrections pollute the sensitivity to y, and makes a cut base
analysis hopeless: RIP Hbb [Pagani, Shao, Zaro, arXiv:2005.10277]

ratios o(y3) — INLOGCD+EW a(yp) a(yp)
a(yp)+o(ry) ONLO, o (yy)+oyi)+o(ysyt) a(yy)+o(yi)+o(yyt)+o (k%)
(yp vs. Kz) (Y vs. Yt) (yp vs. iz and y;)
NO CUT 0.69 0.32 0.28
Nj, > 1 0.37 (0.48) 0.19 0.14
N;, =1 0.46 (0.60) 0.20 0.16
Nj, > 2 0.11 0.11 0.06 -

A kinematic-shape based analysis based on game theory (Shapley values) and
BDT opened new possibilities: Resurrecting bbh with kinematic shapes
[Grojean, Paul, Qian, arXiv:2011.13945]

New techniques will open the "

possibility of turning

problematic processes into

100 4

powerful tests of the quantum
structure of the SM.
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Parametrize new physics in terms of more general effective

interactions.



Parametrizing New Physics beyond specific BSM models

Extension of the SM Lagrangian by d > 4 effective field theory (EFT) operators:

1 1
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ﬁgﬁTzﬁsmjLZAd

d>4

where

La=> P09, [(97@} —d,

under the assumption that new physics lives at a scale A > \/s.

F N

Rescaling

Expansion in (v, E)/A: affects all SM
observables at both low and high-energy.

e SM masses, couplings — rescaling
. . . .. EFT in the tails
e shape of distributions — more visible llustrative plot

in high-energy tails
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(N)NLO QCD+NLO EW SM XS
Linear vs Quadratic SMEFT

< | See Mantani’s talk
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Constrain new physics via flavour observables

10
EFT AKApw LEFT WEFT AWEFT
ESM *CWeak — E Cz Oz
i=1
where
WEFT :
O; — 4-fermion operators of quarks(except t) and leptons
CWVEFT _5 depend on CPMEFT

b s p s b b(s)
G >o< ,
14 v v & 14 ﬁ, v

Strong constraints from B-meson semileptonic decays and intriguing relation with

flavor anomalies.

HEE Combined current
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near — including

HL-LHC and Belle II

[BiBman, Grunwald, Hiller, Kroninger, arXiv:2012.10456]



Bounding the scale of new physics: EFT
Global fit to EFT operators Combining EW -+ Higgs PO
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[J. de Blas et al., arXiv:1905.03764]

Important goals:
Study effects of neglected higher orders in EFT: reduce interpretation errors.
Study effects of adding SM corrections (QCD+EW NLO) — mixing through evolution.

Consider global fit, not just single operators.
Extend set of fitted observables (distributions, STXS, etc.).

Study inclusion of theory errors and their correlations in global fits.

L1



Global SMEFT fits: validity of linear approximation

< | See Mantani’s talk

] M Top + Higgs + VV, Quadratic NLO EFT

1032- s Top + Higgs + VV, Linear NLO EFT g M E FiT
102;
101;-
100;

1074

Magnitude of 95% Confidence Level Bounds (1/TeV?)
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O =0sm

A’ A i
Only testing the sensitivity of the fit. Moving forward:

— Isolate sectors that could be more/less sensitive (no linear contributions)

< Test results in renormalized EFT — | See Ramos’s talk

— If indication of strong dynamics, compare to benchmark models.



Bounding the scale of new physics: specific models

Example of a composite Higgs model:

1T T - 12— -
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[J. de Blas et al., arXiv:1905.03764]
g*, m* — coupling and mass scale of the new resonances
* *
g ,m <= {Oqs, 06, OT, Ow, OB, Ozw, .. }

Where the bottom-up meets the top-down!



Outlook

e The Higgs physics program ahead of us is extremely intriguing and promises
to start answering some of the remaining fundamental questions in particle

physics.

e Groundbreaking new ideas and more powerful techniques allow us to take

much higher challenges: embrace the complexity of LHC events!

e Indirect evidence of new physics from Higgs, top, and EW precision
measurements could come from the synergy between
— pushing theoretical predictions to a new level of accuracy,
— a systematic approach to the study of new effective interactions,

— the intuition and experience of many years of Beyond SM searches!

e Increasing the precision on SM observables could allow to test
higher scales of new physics: a factor of 10 in precision could give access

to scales well above 10 TeV.

e Direct evidence of new physics will boost this process, as the discovery of

a Higgs-boson has prompted and guided us in this new era of LHC physics.
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Thank youl!!

to the organizers and all the participants



