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Outline of Lectures II

• Radiative corrections and Renormalization:

−→ renormalization, general structure;

−→ SM case: main results.

• Radiative corrections and physical observables:

−→ precision tests: testing consistency and constraining unknowns

→֒ lepton collider dominated (LEP)

−→ obtain best estimate of SM processes for searches of new physics

→֒ hadron collider dominated (Tevatron, LHC)

↓
This last point will be expanded in Lectures III and IV



Systematic of renormalization, in a nutshell

Simplest case: scalar (gφ4) theory → L(φ0, ∂µφ0,m0, g0)

⇓

Calculating scattering amplitudes 〈f |φ . . . φ|i〉 via perturbative approach

introduce divergencies beyond the tree level:

−→ ultraviolet (UV): in the p2 → ∞ region of momentum loop integrals,

ex.:
∫

d4p

p2(p2 −m2)

p→∞≈
∫

dp

p
→ log.divergence

−→ infrared (IR): in both loop and real corrections, due to soft (p2 → 0) or

collinear (p · pi → 0) radiation/loop-momenta;

∫

d4p

p2(p2 + 2p · q1)(p2 + 2p · q2)
p→0≈

∫

dp

p
→ log.divergence



Actions taken: at a given perturbative order,

−→ regularize and extract UV and IR singularities, most common:
∫

d4p → µ4−d

∫

ddp dimensional regularization

⊲ divergencies extracted as poles in (4− d).

⊲ µ → (renormalization) scale parameter associated to regularization

procedure

−→ cancel UV singularities by switching from “bare” to “renormalized”

parameters/fields, fixed by suitable renormalization conditions,

L(φ0, ∂µφ0,m0, g0) −→ L(φ, ∂µφ,m, g)

where

m2
0 = m2 + δm2 φ0 =

√

Zφφ g0 = g + δg

and m, φ and g (alternatively δm2, Zφ = 1 + δZφ, δg) are defined by fixing

the renormalized proper vertices (or vertex functions) of the theory.

−→ cancel IR singularities in the sum of virtual+real corrections (only hard

radiation can be resolved).



UV systematics: consider the proper vertices of the theory Γφ...φ

Γφ...φ → one-particle irreducible (1PI) diagrams with n external legs.

2-point proper vertex : Γφφ

Γφ0φ0 = i(p2 −m2
0) + iΣ(p2)f p f = f + f P f

Σ=self-energy=sum of 1PI (one-particle-irreducible) diagrams (all orders).

Notice relation with all orders propagator:f  f = f af + f aP f a+ f aP f aP f a+ · · ·

=
i

p2 −m2
0

+
i

p2 −m2
0

iΣ(p2)
i

p2 −m2
0

+ · · ·

=
i

p2 −m2
0 +Σ(p2)

= (Γφ0φ0)−1

In terms of bare parameters, Γφ0φ0 is UV divergent: fix δm2 and δZφ by

requiring, e.g., that Γφφ = Z−1
φ Γφ0φ0 has a pole at the physical mass with

unit residue, which gives:

Σ(m2) = δm2 and Σ′(m2) = −δZφ



4-point proper vertex: Γφφφφ

Γφ0φ0φ0φ0 = ig0 + iΓ(p1, p2, p3)d p ee d = d ee d + d P ee d

In terms of bare parameters, Γφ0φ0φ0φ0 is UV divergent: fix δg by requiring,

e.g., that g corresponds to the coupling measured in a specific kinematic

realization, which gives:

δg = 2gδZφ − Γ(pexp1 , pexp2 , pexp3 )

where we also use that Γφφφφ = Z2
φΓ

φ0φ0φ0φ0 .

All other n-point proper vertices, Γφ...φ: are obtainable using Γφφ and

Γφφφφ as building blocks, and finite when expressed in terms of m and g.

Notice: parameters are now scale-dependent, m(q2), g(q2).

Any physical observables calculated in terms of m and g is finite and well

defined, although affected by a systematic (perturbative) uncertainty .



Standard Model renormalization: main results

The SM Lagrangian is made of renormalizable field structures,

LSM = LQCD + LEW

= Lferm
EW

+ Lgauge
EW

+ LSSB

EW
+ LY ukawa

EW

where,

LQCD → ψ̄(∂/−m)ψ , ψ̄A/ψ ,
1

4
Ga,µνGa

µν

Lferm
EW

→ ψ̄L(∂/)ψL , ψ̄LV/ψL

Lgauge
EW

→ 1

4
F a,µνF a

µν ,
1

4
BµνBµν

LSSB

EW
→ ∂µφ∂µφ, µ

2φ2, φ4

LY ukawa

EW
→ ψ̄LHψR

The systematic procedure outlined in these lectures will apply with extra

constraints imposed by the presence of a partially spontaneously broken

gauge symmetry.



The set of fundamental parameters of the SM Lagrangian is:

gs,0 , g0 , g
′

0 , µ0 , λ0 , yf,0 , V
ij
0

here taken as bare parameters. Thanks to relations induced by the

symmetries of the theory, e.g.

e = g sin θW = g′ cos θW → e =
gg′

√

g2 + g′2

MW =
gv

2
, MZ =

v
√

g2 + g′2

2
→ MW

MZ

=
g

√

g2 + g′2
=

e

g′
= cos θW

we can trade them for other or “better” sets of input parameters, for

example:

gs,0 , e0 , MW,0 , MZ,0 , MH,0 , mf,0 , V
ij
0

and switch to the corresponding set of renormalized or physical parameters

upon imposing suitable renormalization conditions.

⇒ Relations like MW /MZ = cos θW will automatically be finite but

corrections depend on input parameters (e.g. mt, MH) → natural relations.

Need to specify renormalization scheme and use consistency.



Definitions and renormalization conditions

QCD → in the absence of a mass scale, use MS scheme or minimal

subtraction scheme, i.e. subtract just pole parts of each divergent proper

vertex.

EW → use procedure illustrated in this lecture for a scalar gφ4 toy model

→ on-shell subtraction scheme.

• mass/coupling renormalization:

M2
W,0 = M2

W + δM2
W , . . . , mf,0 = mf + δmf , V

ij
0 = V ij + δV ij

• field renormalization:

W±

0 =
√
ZWW± ,

(

Z0

A0

)

=

( √
ZZZ

√
ZZA

√
ZAZ

√
ZAA

)(

Z

A

)

. . .

where, the following renormalization conditions are traditionally adopted:

δM2
W = Re[ΣW

T (M2
W)] , δZW = −Re[ΣW ′

T (M2
W )] , . . .

and similar ones for other vector+scalar and field renormalization

constants ⇒ the bulk of corrections are in the self-energies!



Flavor sector: need to carefully account for the rotation to mass eigenstates

(beyond the scope of these lectures).

Finally, the QED electric charge renormalization condition is adopted:

e defined as measure in the Thomson limit (k → 0 scattering of photons,

on-shell electrons)

α(0) =
e2

2π
≈ 1

137

Once expressed in terms of the renormalized parameters and fields, any

physical observable is finite and can be calculated at the proper

perturbative order in QCD+EW and compared with experimental results.

⇓

Electroweak precision fits



Electroweak precision fits

An incredible amount of measurements of electroweak observables have

been collected over the past many decades:

• Spp̄S at CERN (1981-1990) 300× 300 GeV pp̄ collider:

discovery of W and Z bosons!

• LEP I at CERN (1989-1995) at energies around
√
s =MZ :

e+e− → Z → ff̄ .

• LEP II at CERN (1996-2000) at energies around
√
s = 200− 208 GeV:

e+e− →WW → 4f .

• SLC at SLAC (1989-1998) at energies up to 100 GeV, polarized beams.

• Tevatron at Fermilab, RUN I+II (1987-2011) 0.98× 0.98 TeV pp̄

collider: top-quark discovery! Precision measurement of MW and mt.

• LHC at CERN, now running at 3.5× 3.5 TeV, will go up to 7× 7 TeV:

will rediscovery the SM and more!



Measurement of MZ and ΓZ at LEP I

At the Z pole e+e− → ff̄ (f 6= e) dominated by Z exchange:

dσf
Z

dΩ
=

9

4

sΓeeΓff̄/M
2
Z

(s−M2
Z)

2 + s2Γ2
Z/M

2
Z

[

(1 + cos2 θ)(1− PeAe) + 2 cos θAf (−Pe +Ae)
]

Ecm [GeV]

σ ha
d 

[n
b]

σ from fit
QED unfolded

measurements, error bars
increased by factor 10
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Pe: polarization of electron beam

Γee,Γff̄ : partial widths for Z → e+e−ff̄

Af : L-R coupling constant asymmetry

Af =
(gfL)

2 − (gfR)
2

(gfL)
2 + (gfR)

2
=

2gfV gfA

(gfV )2 + (gfA)
2

Scanning at the Z pick and fitting to σf
Z yields measurements of MZ , ΓZ

and σhad = 12πΓeeΓhad/(M
2
ZΓ

2
Z).



Measurement of MW at LEP II
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From W invariant-mass reconstruction: t-channel ν-exchange, s-channel γ- and

Z-exchange → test of 3V -gauge coupling.

From rise of the WW cross section near threshold (statistically limited) but till

another test of non-abelian interactions.



Measurement of mt at the Tevatron

New measurement from LHC should improve precision.



Strategy

Having a variety of measurement for different observables, test the SM by

comparing theory and experiment.

• Pick a set of input parameters, typical choice:

αs , α , GF , MZ , MH , mt , mf , . . .

• Compute theoretical predictions, including radiative corrections, in a given

renormalization scheme treating the best measured parameters as inputs (α,

GF , fermion masses except mt and mc), i.e. as fixed parameters.

• Perform a best fit to the electroweak data, defined by a χ2 test

χ2(α,GF , . . .) =
∑

i

(Ôexp
i −Oth

i (α,GF , . . .))
2

(∆Ôexp
I )2

This results in a best fit of the non-fixed or floating parameters. Compare

best-fit values to measurements if available (ex.: MW , mt, αs, not MH !)

• For the best-fit values of all input parameters, quote the SM theoretical

prediction for each observable and compare with the experimental

measurements. “Tensions” may signal new physics . . .



Fine structure constant, α

Measured at low energies,

α ≡ e2(0)

4π
=

e20
4π(1−∆α(0))

=
1

137.03599890(50)

then evolved to MZ :

αe(MZ) =
α

1−∆α(MZ)

∆α → QED and (2-loop) QCD contributions (∆α
(5)
had).

Uncertainties from: h.o. perturbative and nonperturbative corrections, light

quark masses (mainly mc), lack of data below 1.8 GeV, slight disagreement in

extraction of ∆α
(5)
had.

Fermi constant, GF (or Gµ) From muon lifetime:

τ−1
µ =

G2
Fm

5
µ

192π3
F

(

m2
e

m2
µ

)

(

1 +
3

5
m2

µM
2
W

)

[

1 +

(

25

8
− π2

2

)

α(mµ)

π
+O

(

α2
)

]

Measure:

GF = 1.16637(1)× 10−5 GeV−2

uncertainty: almost all from residual experimental error.



Example of best fit of floating parameters

W-Boson Mass  [GeV]

mW  [GeV]
80 80.2 80.4 80.6

χ2/DoF: 0.9 / 1

TEVATRON 80.420 ± 0.031

LEP2 80.376 ± 0.033

Average 80.399 ± 0.023

NuTeV 80.136 ± 0.084

LEP1/SLD 80.362 ± 0.032

LEP1/SLD/mt 80.363 ± 0.020

July 2011

Top-Quark Mass   [GeV]

mt   [GeV]
160 170 180 190

χ2/DoF: 6.1 / 10

CDF 172.5 ± 1.00

D∅ 174.9 ± 1.4

Average 173.2 ± 0.90

LEP1/SLD 172.6 +  13.5172.6 −  10.4

LEP1/SLD/mW/ΓW 179.7 +  11.7179.7 −   8.7

July 2011

All following plots from:

The LHC Electroweak Working Group

(http://lepewwg.web.cern.ch/LEPEWWG/)



Summary of various “pulls”: theory vs experiment

Measurement Fit |Omeas−Ofit|/σmeas

0 1 2 3

0 1 2 3

∆αhad(mZ)∆α(5) 0.02750 ± 0.00033 0.02759

mZ [GeV]mZ [GeV] 91.1875 ± 0.0021 91.1874

ΓZ [GeV]ΓZ [GeV] 2.4952 ± 0.0023 2.4959

σhad [nb]σ0 41.540 ± 0.037 41.478

RlRl 20.767 ± 0.025 20.742

AfbA0,l 0.01714 ± 0.00095 0.01646

Al(Pτ)Al(Pτ) 0.1465 ± 0.0032 0.1482

RbRb 0.21629 ± 0.00066 0.21579

RcRc 0.1721 ± 0.0030 0.1722

AfbA0,b 0.0992 ± 0.0016 0.1039

AfbA0,c 0.0707 ± 0.0035 0.0743

AbAb 0.923 ± 0.020 0.935

AcAc 0.670 ± 0.027 0.668

Al(SLD)Al(SLD) 0.1513 ± 0.0021 0.1482

sin2θeffsin2θlept(Qfb) 0.2324 ± 0.0012 0.2314

mW [GeV]mW [GeV] 80.399 ± 0.023 80.378

ΓW [GeV]ΓW [GeV] 2.085 ± 0.042 2.092

mt [GeV]mt [GeV] 173.20 ± 0.90 173.27

July 2011



SM Higgs-boson mass range: constrained by EW precision fits

Increasing precision will continue to provide an invaluable tool to test the

consistency of the SM and its extensions.
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⇓

MH = 92+24
−26 GeV

MH < 161 (185) GeV

plus exclusion limits (95% c.l.):

MH > 114.4 GeV (LEP)

MH 6= 156− 177 GeV (Tevatron)

focus is now on exclusion limits and discovery!



Disentangling mt −MH and MW −MH correlations
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MW /(GeV) = 80.409− 0.507

(

∆α
(5)
h

0.02767
− 1

)

+ 0.542

[

(

mt

178GeV

)2

− 1

]

− 0.05719 ln
(

MH

100GeV

)

− 0.00898 ln2
(

MH

100GeV

)

A. Ferroglia, G. Ossola, M. Passera, A. Sirlin, PRD 65 (2002) 113002

W. Marciano, hep-ph/0411179


