The Standar Model of Particle Physics Lecture IV

The Standard Model in the LHC hera

Laura Reina

Maria Laach School, Bautzen, September 2011

Outline of Lecture IV

- Standard Model processes as background to new physics:
 - \rightarrow new physics searches at hadron colliders: structure of hadronic processes, most important building blocks;
 - \longrightarrow theoretical prediction dominated by QCD effects;
 - \longrightarrow high accuracy in theoretical predictions needed: challenges;
 - \longrightarrow recent developments and existing tools;
 - \longrightarrow milestone examples.

Beyond Higgs boson physics . . .

Building on solid SM ground, we can start exploring beyond SM scenarios in as much generality as possible, looking for most distinctive patterns and signatures of various realizations of EWSB.

 \hookrightarrow "Signatures of new physics at the LHC" (SLAC)

Main Standard Model irreducible/reducible backgrounds:

- $\longrightarrow W/Z + n-\text{jets}$
- $\longrightarrow W/Z + b-\text{jets}$
- $\longrightarrow t\bar{t}$ +jets
- \longrightarrow ...

all characterized by: large multiplicity and many massive particles.

A reliable quantitative description of strong dynamics in high energy collisions remains as a crucial technical challenge which has been largely faced during the last decade.

Schematically ...

The hard cross section is calculated perturbatively

$$\hat{\sigma}(ij \to X) = \alpha_s^k \sum_{m=0}^n \hat{\sigma}_{ij}^{(m)} \alpha_s^m$$

n=0: Leading Order (LO), or tree level or Born level n=1: Next to Leading Order (NLO), include $O(\alpha_s)$ corrections

and convoluted with initial state parton densities at the same order.

Renormalization and factorization scale dependence left at any fixed order. Setting $\mu_R = \mu_F = \mu$:

$$\sigma(pp, p\bar{p} \to X) = \sum_{ij} \int dx_1 dx_2 f_i^p(x_1, \mu) f_j^{p, \bar{p}}(x_2, \mu) \sum_{m=0}^n \hat{\sigma}_{ij}^{(m)}(\mu, Q^2) \alpha_s^{m+k}(\mu)$$

Systematic theoretical error from:

- \triangleright PDF and $\alpha_s(\mu)$;
- \triangleright left over scale dependence;
- ▶ input parameters.

Systematic error from PDFs: need care ...

Several PDF sets (CTEQ, MSTW, NNPDF, ...) allow to estimate the error from α_s and error obtained by varying the inputs used in the PDF fit within their experimental error.

However: results obtained using different sets of PDF differ by much more than the respective internal errors \longrightarrow difference from parametrization

Example: Tevatron bound has been questioned with the claim that the error from PDF's has been largely underestimated

(Baglio, Djouadi, Ferrag, Godbole, arXiv:1101.1832)

PDF4LHC: problem carefully studied for LHC physics

(Forte, Huston, Mazumdar, Thorne, Vicini, arXiv:1101.0593)

- NLO: use sets that perform a global fit to all available collider data: CTEQ(6.6), MSTW(2008), NNPDF(2.0). Estimate the error from PDF using the envelope prescription.
- NNLO: use MSTW(2008), normalized to a more conservative error i.e. multiplied by (NLO envelope error/NLO MSTW2008 error).

Hard cross sections: pushing the loop order, why?

- Stability and predictivity of theoretical results, since less sensitivity to unphysical renormalization/factorization scales. First reliable normalization of total cross-sections and distributions.
- Physics richness: more channels and more partons in final state, i.e. more structure to better model (in perturbative region):
 - \longrightarrow differential cross-sections, exclusive observables;
 - \rightarrow jet formation/merging and hadronization;
 - \longrightarrow initial state radiation.
- First step towards matching with algorithms that resum particular sets of large corrections in the perturbative expansion: resummed calculations, parton shower Monte Carlo programs.

Main challenges ...

- Multiplicity and Massiveness of final state: complex events leads to complex calculations. For a $2 \rightarrow N$ process one needs:
 - \rightarrow calculation of the 2 \rightarrow N + 1 (NLO) or 2 \rightarrow N + 2 real corrections;
 - \longrightarrow calculation of the 1-loop (NLO) or 2-loop (NNLO) $2 \rightarrow N$ virtual corrections.
- Flexibility of NLO/NNLO calculations via Automation:
 - \rightarrow algorithms suitable for automation are more efficient and force the adoption of standards;
 - \rightarrow faster response to experimental needs (think to the impact of projects like MCFM).
- Matching to Parton Shower Monte Carlos at NLO.
 - \rightarrow instead of correcting NLO parton level calculation to match the hadron level, shower with NLO precision!

NLO: challenges have largely been faced and enormous progress has been made

- several independent codes based on traditional FD's approach
- several NLO processes collected and viable in MFCM (→ interfaced with FROOT) [Campbell, Ellis]
- Enormous progress towards automation:
 - \rightarrow Virtual corrections: new techniques based on unitarity methods and recursion relations
 - BlackHat [Berger, Bern, Dixon, Febres Cordero, Forde, Ita, Kosower, Maitre]
 - ▷ Rocket [Ellis, Giele, Kunszt, Melnikov, Zanderighi]
 - HELAC+CutTools,Samurai [Bevilacqua, Czakon, van Harmeren, Papadopoulos, Pittau,Worek; Mastrolia, Ossola, Reiter, Tramontano]
 - \rightarrow Real corrections: based on Catani-Seymour Dipole subtraction or FKS subtraction
 - ▷ Sherpa [Gleisberg, Krauss]
 - ▷ Madgraph (AutoDipole) [Hasegawa, Moch, Uwer]
 - ▷ Madgraph (MadDipole) [Frederix, Gehrmann, Greiner]
 - ▷ Madgraph (MadFKS) [Frederix, Frixione, Maltoni, Stelzer]

- virtual+real:
 - MadLoop+MadFKS [Hirschi, Frederix, Frixione, Garzelli, Maltoni, Pittau]
- interface to parton shower well advanced:
 - ▷ MC@NLO [Frixione, Webber, Nason, Frederix, Maltoni, Stelzer]
 - ▷ POWHEG [Nason, Oleari, Alioli, Re]

When is NLO not enough?

- When NLO corrections are large, to tests the convergence of the perturbative expansion. This may happen when:
 - \rightarrow processes involve multiple scales, leading to large logarithms of the ratio(s) of scales;
 - $\rightarrow\,$ new parton level subprocesses first appear at NLO;
 - $\rightarrow\,$ new dynamics first appear at NLO;
 - $\rightarrow \ldots$
- When truly high precision is needed (very often the case!).
- When a really reliable error estimate is needed.

Some guiding principles:

- reduce the dependence on unphysical scales (renorm./fact. scale);
- have the perturbative expansion of physical observables (inclusive σ , distributions, ...) to show a well behaved convergence.

Several possible steps:

- add enough higher order corrections (NLO, NNLO) till: scale dependence improves, no large next order corrections expected;
- look for recurrent large contributions that may spoil convergence;
- find the best expansion parameter (α_s , α_s times large logarithms, ...);
- using scaling properties, resum large scale dependent corrections;
- find the best choice of unphysical scales to avoid generating large logarithmic corrections at all orders;
- study the effect of cuts and vetos.

Interesting to look at some examples

<u>Ex. 1</u>: W/Z production at the Tevatron, testing PDF's at NNLO.

Rapidity distributions of the Z boson calculated at NNLO:

(C. Anastasiou, L. Dixon, K. Melnikov, F. Petriello, PRL 91 (2003) 182002)

- W/Z production processes are standard candles at hadron colliders.
- Testing NNLO PDF's: parton-parton luminosity monitor, detector calibration.

<u>Ex. 2</u>: W+jets production at the Tevatron, where progress has been most impressive!

(CDF collaboration, arXiv:0711.4044)

- much reduced systematics at NLC
- only up to W + 2j available in '07
- today W + 3j and W + 4javailable at NLO.

(Berger et al., arXiv:0907.1984)

Best scale choice only possible with NLO wisdom ...

(Berger, Bern, Dixon, Febres Cordero, Forde, Gleisberg, Kosower, Maitre, arXiv:0907.1984)

"Wrong" scale choice leads to enhanced unphysical instabilities

Ex. 3: $gg \to H$, main production mode (with $H \to \gamma\gamma, W^+W^-, ZZ$) ... large K-factors, scale dependence, resummations, and more.

 \Downarrow

NLO QCD corrections calculated exactly and in the $\underline{m_t \to \infty}$ limit: perfect agreement even for $M_H >> m_t$.

Dominant soft dynamics do not resolve the Higgs boson coupling to gluons

where, including NLO and NNLO QCD corrections:

$$C(\alpha_s) = \frac{1}{3} \frac{\alpha_s}{\pi} \left[1 + c_1 \frac{\alpha_s}{\pi} + c_2 \left(\frac{\alpha_s}{\pi} \right)^2 + \cdots \right]$$

Fixed order NNLO:

- very large corrections in going $LO \rightarrow NLO$ (K=1.7-1.9) $\rightarrow NNLO$ (K=2-2.2);
- perturbative convergence $LO \rightarrow NLO (70\%) \rightarrow NNLO (30\%)$: residual 15% theoretical uncertainty.
- Tevatron case: still some tension.

Resumming effects of soft radiation ...

[Catani,de Florian,Grazzini,Nason(03)]

Theoretical uncertainty reduced to:

- $\rightarrow \simeq 10\%$ perturbative uncertainty, including the $m_t \rightarrow \infty$ approximation.
- $\rightarrow \simeq 10\%$ (estimated) from NNLO PDF's (now existing!).

But ... let us remember that: going from MRST2002 to MSTW2008 greatly affected the Tevatron/LHC cross section: from 9%/30% ($M_H = 115$ GeV) to -9%/+9% ($M_H = 200/300$ GeV) !

[De Florian, Grazzini (09)]

Resumming effects of soft radiation for q_T^H spectrum ...

large $q_T \xrightarrow{q_T > M_H}$ perturbative expansion in $\alpha_s(\mu)$

small $q_T \xrightarrow{q_T \ll M_H}$ need to resum large $\ln(M_H^2/q_T^2)$

residual uncertainty:

LO-NLL: 15-20%

NLO-NNLL: 8-20%

[Bozzi,Catani,De Florian,Grazzini (04-08)]

Exclusive NNLO results: $gg \rightarrow H, H \rightarrow \gamma\gamma, WW, ZZ$

Extension of (IR safe) subtraction method to NNLO

- \longrightarrow HNNLO[Catani,Grazzini (05)]
- \longrightarrow FEHiP [Anastasiou, Melnikov, Petriello (05)]

Essential tools to reliably implement experimental cuts/vetos.

[Anastasiou, Melnikov, Petriello (05)]

jet veto (to enhance $H \to WW$ signal with respect to $t\bar{t}$ background) seems to improve perturbative stability of y-distribution \longrightarrow jet veto is removing non-NNLO contributions. Full fledged $(gg \rightarrow)H \rightarrow W^+W^- \rightarrow l^+\nu l^-\bar{\nu}$

The magnitude of higher order corrections varies significantly with the signal selection cuts.

[Anastasiou, Dissertori, Stöckli (07)]

$gg \rightarrow H$ implemented in MC@NLO and POWHEG

[[]Nason, Oleari, Alioli, Re]

- \rightarrow general good agreement with PYTHIA;
- \rightarrow comparison MC@NLO vs POWHEG understood;
- $\rightarrow\,$ comparison with resummed NLL and NNLL results under control.

<u>Ex. 4</u>: Inclusive SM Higgs Production: theoretical predictions and their uncertainty

(LHC Higgs Cross Sections Working Group, arXiv:1101.0593 \rightarrow CERN Yellow Book)

- \rightarrow all orders of calculated higher orders corrections included (tested with all existing calculations);
- \hookrightarrow common recipe for renormalization+factorization scale dependence;
- \hookrightarrow PDF and α_s errors following PDF4LHC prescription (\rightarrow see de Florian's talk);
- \hookrightarrow all other parametric errors included;
- \hookrightarrow theory errors combined according to common recipe.

For $\sqrt{s} = 7$ TeV (from S. Dittmaier's talk, BNL, May 2011)

		Uncertainties		NLO/NNLO/NNLO+	
	M_H	scale	PDF4LHC	QCD	${ m EW}$
ggF	$< 500 { m ~GeV}$	6-10%	8-10%	> 100%	5%
VBF	$< 500 { m ~GeV}$	1%	2-7%	5%	5%
WH	$< 300 { m ~GeV}$	1%	3-4%	30%	5-10%
ZH	$< 300 { m ~GeV}$	1-2%	3-4%	40%	5%
$t\bar{t}H$	$< 300 { m ~GeV}$	10%	9%	5%	?

For $\sqrt{s} = 14$ TeV

		Uncertainties		NLO/NNLO/NNLO+	
	M_H	scale	PDF4LHC	QCD	\mathbf{EW}
ggF	$< 500 { m ~GeV}$	6-14%	7%	> 100%	5%
VBF	$< 500 { m ~GeV}$	1%	3-4%	5%	5%
WH	$< 300 { m ~GeV}$	1%	3-4%	30%	5 - 10%
ZH	$< 300 { m ~GeV}$	2-4%	3-4%	45%	5%
$t ar{t} H$	$< 300 { m ~GeV}$	10%	9%	15- $20%$?