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A unique time in particle physics

» A wealth of high-quality data now available from a broad spectrum of experiments and observations.
» Powerful new ideas are boosting the accuracy of both theoretical and experimental results.

» Major decisions for future projects are being made (Snowmass/P5, European Strategy) based on
current results and technologies, future projections, and theoretical guidance.




B-factories, LHCb, (ATLAS/CMS)
Towards higher luminosities.
Probing flavour dynamics in the

qguark sector.
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Complementarity in bounding new physics

Flavour- and low-energy observables can be more sensitive to the scale of new physics,
but they may not be able to unambiguously test it. Q
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High-energy collider have less sensitivity but can test the compatibility
of new physics over a uniquely broad spectrum of measurements.




ental talks
~ 30 theory talks

SUNDAY 23/03 MONDAY24/03 SATURDAY29/03 SUNDAY30/03

V5 Domcke
e o
T c oo
I i
o Aot
.~ TTashio M. Mihlleitner

R. Hayes

R. Chatterjee
V. Miralles

L A owoe o
T e | oo | e [ eenm
L s vowwes | BBwe | Roww  ww

ve breadth
quality of

experimental results

SESSIONS

Flavour

Neutrino

BSM

YSF Il YSF 1l G. Yu Dark Matter
YSF I H. Birch, E. Lavaut, A. Ruggiero, S. Lomte,
M. Hartmann, G. Gaudino, ~ J.P. Pinheiro, N. Bhuiyan, la.gKuschick. E. Fernandez Martinez YSF IV Cosmology

A. Bansal, C. Lemettais, M.I. Dias Astros, F. Esser
D. Suelmann. L. Paolucci C. Girard-Carilho,
R. Faure, A. Langella

The role of theory is chaIIenglng

Z. Wolls, D. Minh Hoang. H.
Tiblom, E. Muhammad, D.
Marckx

Dark Matter, Axions and Cosmology

Brout-Englert-Higgs Boson
Standart Model
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» Unambiguously confirm the realm of validity of known theories (Standard Model)
» ldentify its failures and use them as hints of new physics

» Constantly explore new ideas and promote future explorations

» ldentify and interpret new phenomena



The Standard
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Strengths and

Weaknesses

Our current knowledge of particle physics is
based on the Standard Model (SM) which has
been confirmed by discoveries and precision
measurements to correctly describe particle
physics at the EW scale with great accuracy.

The strength and success of the SM at the
EW scale allows us to identify its failures and
weaknesses.

They become a unique handle to explore
physics beyond the SM (BSM).



SM strength: consistency at the quantum level

For My, we combine:

 All LEP 2 measurements

 Previous Tevatron average

(d ATLAS and LHCb early measurements
O CDF [My=(80.4335+0.0094) GeV]

O ATLAS [M\,=(80.36651+0.016) GeV]
a CMS [My,=(80.3602+0.010) GeV]

My = 80.366 + 0.0080 GeV (without CDF)
80.356 + 0.0045 GeV (from fit)

For m; we combine:

(J 2016 Tevatron combination

(d ATLAS Run 1 and early Run2 results

( CMS Run 1 and early Run 2 results

QO CMS I4j [m=(171.77+0.38) GeV]

d CMS I+j boosted [m=(173.061+0.83) GeV]
(d ATLAS I+j boosted [mt=172.95+0.53) GeV

m,=172.31 4+ 0.32 GeV
172.38 + 0.31 GeV (from fit)

CMS Preliminary
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See talk by Daniel Litim

Can we ascertain or refute vacuum stability at the 50 level?

SM vacuum stability revisited
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central values and errors
for top-quark mass and
strong coupling constant
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On quantum criticality and

custodial naturalness, R
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SM strength: broad consistency with all LHC measurements

Aug 2023 CMS Preliminary
Cl\/lls measurements I I 5.02,7,8,13 TeV CMé measurements (slat,sl:at+sys)
. . Status: June 2024 vs. NNLO o) theory o e e e
Standard Model Production Cross Section Measurements st "
3 Oa W NLO th —i 1?2 f 88(13%1%11% 20 fbj
O total (x2) . y th. F—o— . x U. T U. .
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SM: still work in progress

Often referred to as “theoretical systematics”: ubiquitous in all talks we have listened to.

'

Parametric
Uncertainties:
High precision which will
continuously improve
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Short-distance
QCD+EW:
Impressive progress

Moriond QCD
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Long-distance QCD effects

(PDF, hadronization,

hadronic matrix elements, ...)
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Impact of:

QCD infrastructure,

Theoretical framework,
Observables (definition of), ...
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Controlling hadronic matrix elements in rare b decays

See talk by Andreas Jlttner

See talk by Méril Reboud
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Recent progress on lattice QCD

D-mesons: CP-violation in ch d and analytic constraints allow
' rviofation In charm decays for large numerical analyses.

Highly sensitive to new physics

See talk by Maria Laura Piscopo




Top-antitop production near threshold
Toponium physics at the LHC

See talk by Benjamin Fuks

| space (GeV™)
f toponium formation: PrObe Of the QCD pOtentlal

ay ~ 0.05GeV~! Lt .
: » Toponium effects
toponium » Currently not included in MC simulations
L ~0.3GeV™!
oT,
Top-antitop production near threshold
) » Emergence of a toponium system at a scale of 0.05 GeV'
bandi » Decay at a time scale of ~ 0.3 GeV!
» Occurs well before hadronisation at 5 GeV!
1 1
+— ~09Gey~!
ZFT t
b and b

| time (GevY) Possible impact on top-quark mas
measurement



Reaching percent-level precision for (HL)-LHC physics
A prototype example: Drell-Yan production — what higher-orders can tell

N C- DY K-Factor W~ NLO
LHC 13TeV LHC 13TeV
1.025 PDF4LHC15_nnlo_mc NLO — NNLO — N3LO PDF4LHCI15_nnlo_mc
: PP y*+X (e*e™+X) 8 - cent.=Q
Q Heent.=Q 2 ——
2 €
5 b
S~
©0.975

600 800 1000 1200 1400 1600 1800

| | | | | | | | |
200 400 600 800 1000 1200 1400 1600 1800 Mw Q[GeV]

Q [GeV] ]
Duhr, Dulat, Mistlberger, 2001.07717 K—Factor W
LHC 13TeV

PDF4LHC15_nnlo_mc

* Scale dependence: non-uniform behavior in all Q-regions

e Important input for PDFs (not yet included)
* Region around Q~My,: reconsider how to estimate
theoretical uncertainty from scale variation

o/oN3LO

200 400 600 800 1000 1200 1400 1600 1800

Q[GeV]
Recall : need 0.1% accuracy in template distributions Duhr, Dulat, MistIberger, 2007.13313

in order to achieve AM,,~10 MeV




SM — weakness

Apart from not explaining nor including All these themes have been at the core of

this week’s program!
» The nature of dark matter and dark energy

» The origin of the baryon asymmetry of the universe They all come together at Moriond EW
» The origin of neutrino masses (neutrinos, BSM, DM, axions, cosmology)

» Gravity as a quantum theory

The scalar sector of the SM itself leaves lots of questions unexplained and mainly fails to

explain the origin of the EW scale itself ,

» Why the form of the SM scalar potential? V(p) = u?pTep + A(pT¢)? (u%< 0)

» Why a light Higgs-boson mass (My~Agy).  ME=-2u% | » +0(Ay?) | ? ?
m
» Why the hierarchy of Yukawa couplings (fermion masses)? Why this new force? Yij = 7f Oij
Origin of quark/lepton flavor dynamics )
? ? ite? P
» Why one scalar? Elementary? Composite: Lywi = Vi Biowl + h.c.




Exploring
« BSM models targeting SM failures and weaknesses
M Od € | S - Flavor hierarchies (CKM, PMNS, ...)

beyO N d th e S I\/I - Baryon Asymmetry of the Universe

« Dark Matter

« BSM models exploring unchartered regions
- Very light/weakly coupled (axions, DM, ...)
- Very heavy (beyond LHC bounds)




Light weakly-interacting particles

Could still have evaded detection so far

See talk by Marco Nardecchia

Models with light vectors accompanied by anomalons,

heavy chiral leptons which directly affect Hyy and HZycouplings
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See talk by Jernej Kamenik
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Dark Matter/Axions

Phenomenological study of

Is DM electroweak?

Accidental SO(10) and Pati-Salam axions

= & Comprehensive review of EW DM survivors
105 p—rrrrm—r = pointing to needed theoretical improvements
104 WISPL
10° et
— 10? E 0.6 o~ on (Nf=2+1) == oy (Lat. Sys.) |
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- 10 . — — v : : -
DM-Radio N e I f A 3 e I A
101 il 7{ J: { [ 1 J [ { { H d It
10—2 ¢ Accidental PQ (pre-in s Accidental PQ (post-infl) ¢ High quality RO o e 0.0 II. {T T. Tﬂ ‘ﬂ Ip HT ﬂ} Iﬂ ]ﬂ q Tﬂ ]ﬂ ]ﬂ.
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A proper PQ theory should: See talk by Anupam Ray n

» realize the PQ as an accidental symmetry
» protect the U(1)PQ against UV sources of
PQ breaking (PQ-quality problem)

See talk by Luca Di Luzio

See talk by Diego Redigolo

DM with implications for Baryogenesis
See talks by Alejandro Ibarra and Miguel Escudero Abenza




Dark Matter/Axions

oscillation period Tysc [d]

L= MICROSCOPH

10722 1072 1020 1071°

Food for thought:

See talk by Gilad Perez
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Nelson-Barr ultra-light DM
Non-QCD axion DM solving the strong CP problem

New type of pheno
» Time dependent CKM angles
» Probed by B-factories and nuclear clocks

Shadow Matter (and Charge)

See talk by David E. Kaplan

10-20 10-18 10-16 10-14

» Loosening constraints of GR allows for source terms that could
explain why we think there is dark matter

» New source terms for EM produce a charged component of the
fake dark matter. could affect the CMB, BBN, galactic
dynamics, and direct detection. Challenging pheno (plasma
dynamics)

» If Shadow Matter is most or all of dark matter, it is in conflict
with inflation. Worth exploring new ideas for initial conditions.




CKM hierarchy vs PMNS anarchy

Pati-Salam + flavor deconstruction inspired

+ partial compositeness

See talk by Javier Lizana

» Generate CKM/PMNS patterns
» Composite Higgs

» Testable at present/future experiments
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See talk by Sokratis Trifinopoulos

Flavor pattern from quantum entanglement?

E(SF) = E(Srli), ®17)q)

Entanglement Minimizing CKM Angles versus Energy
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Entanglement Minimizing PMNS Angles versus Energy

500 1000



Extended scalar sectors

For a more general overview:
see talk by Tania Robens

Yukawa couplings
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See talk by Margarete Muhlleitner
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" e Within the more general framework of effective field
Interpreting i ¢

New p hVSlCS . SM Effective Field Theory
- Low Energy Effective Field Theory (Flavor)

- Effective theory for u — e conversion

e Matching to UV models




Connecting far apart scales: the EFT picture

BSM UV extensions

AUV Heavy physics decouples and leaves
! effective contact interactions of dim >4
(SM)EFT RGE EFT operators in

(U¥) terms of SM fields
v SMEFT
1 AEW Lsmerr = Lsm + z Ad - OE%EFT

LEET (t,HW,Z)
WC depend on

VALY ) ) l RGE mt) MW)MZIMHI MX
I Ab (B) CLEFT
| b Ligrr = Loep+ocp + z 05"
: AC (D) EW
! €
: As (K)

Lighter (II3)SM particles

Calculate physical processes at each scale and
derive constraints on the UV theory




Beyond EW fits — Higgs, top, flavour observables

Connecting far apart scales naturally lends itself to the EFT framework

tHWZ)

Match to LEFT operators to
calculate flavour observables

A, (B)

A AUV C;-S:Z’EFT(AUV) (from matching to UV theory)
SMEFT by the global fit anomalous dimension
togeth : SMEFT
COEAVIGIIYEN Evolved to C;; "~ (Agy) :

(-U¥) t ’ Jenkins, Manohar, and Trott,
Zal ez bals 1308.2627, 1310.4838,1312.2014
R AEW All fit observables are calculated in terms of Cfé"EFT(AEW)

(t,HW,Z) ﬂ
LEFT

Jenkins, Manohar, Stoffer,
1709.04486, 1711.05270

A (D)

So far only LO RGE evolution can be consistently implemented,
A NLO RGE evolution requires 2-loop anomalous dimension.
s (K)




SMEFT Global Fits

Constraining new physics through the spectrum of LHC and b-factory measurements

Higgs boson observables

* Production and decay rates
* Simplified Template Cross Sections (STXS)

Cw _
* Top quark observables CMS talks p tEV N
o pp > tt, ttZ, ttW, tty,tZq, tyq, tW, ... (Coo o o Co
Cun [ ||| o i g | OS] | Cor
* Drell-Yan, Di-boson measurements Crw kC(?')eC(l) Cu Cu) Cin
. —_ CHG Hgq Hgq Hu Hd CS’;‘
pp = W,Z = fif AN EWPO *)
s pp > WZI,WW,ZZ,Zy “q
Cux [ . CLE O35 CB C@
Cri Co Ci O C
* Flavor observables (Cun \_ tt J
* AF=2:AMBy,, D° — D°, & Higgs

* Leptonicdecays: By > U u ,B=>tv,D - v, K-> pv, m - pv
* Semi-leptonic decays: B » D™y, K - nvv, B = Kvv, B,K — nly
* Radiative B decays (B = X; 47) See Belle and
LHCb talks




SMEFT: beyond SM coupling rescaling

Framework: Extend SM Lagrangian by effective interactions (SMEFT)

1 1 1
Lia=Lsm+ L5+ -—5Le+---

= Lo+ 3 LY

d>4
La=3y c0®, o] =d
Built of SM fields and respecting the SM gauge symmetry. A

i

Expansion in (v, E)/A: affects all SM observables at
both low and high energy

» SM masses and couplings — rescaling

Under the assumption that new
physics leaves at scales A > /s

Rescaling

SM

EFT in the tails
[lustrative plot

» Shapes of distributions — more visible in tails of distributions

pT(t,H)
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TeV

HD

Yuk.

Hip

m Flavor (down)

Dip.

B Flavor (up)

lq

m EW m Collider

qq o

Can be instructive to have a class of models in mind

See talk by Christoph Englert

L) =
L)

O

(3)

= -——ZJij

dpiCdy; + h.c.,
(3) €abe d Cd —l— h C.

Allwicher, Cornella, Isidori, Stefanek: 2311.00020

ledq

0.5

Scalar diquarks — probe
composite scenarios

Im(y Py )

Flavour assumption: U(2)"5 scenario
4g-operators drastically constrained by
flavour observables, put strong bound on
new physics scale when added to a global fit

This can be mapped to specific UV models

Mg,

.

S~

Decays
Loop Mixing
Bt — ¢rt

e

State | Spin | SM charges | Tree-level generated operators — —03;
b (3,1)2/3 | Oud e l
e | O (6,1)2/3 | Oud Oaa = (dgYy dR)(dR%Ld )

0.5



Effective theory for 4 — e conversion ‘ &
Al
See talk by Jure Zupan Q
A | DD —ylhal Ry LY + yb R e R Q) + e, u(d) -
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—— i L Leptoquark
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miq /\\ Model
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l .
) 2 spin-dep.
l S ’ 107 / tensor-curr.
.30 - =

Probing heavy new physics

N .

to the u — e rate
|RGo W5l oo |Roo Wi |

relative contribution.
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Overview talks

We had some very nice overview talks:

» Global Analysis of neutrino data (lvan Esteban)

» Large Scale Structures Observations (Ruth Durrer)

» Connecting to cosmic inflation (\Marco Drewes)

» HO tension (Martin Schmaltz)

» Gravitational Waves: present and future (Valerie Domcke)



» To the organizers and the staff who has hosted us during this remarkable week.

» To all the speakers who have reported about so many different exciting results and ideas.
» To all our colleagues who have contributed to the work we have heard about.




