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1) Assess the MC needs = “Task force”
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fora’s activities served as basis to the EF main reports.




Energy Frontier:
Exploring the TeV Scale and beyond

Through the breadth and multitude of
collider physics signatures



Exploring beyond the Standard Model of particle physics

A very minimal quantum field theory describing
strong, weak, and electromagnetic interactions,
based on a local (gauge) symmetry

SU(3)c x SU(2), x U(1)y = SU(3)cx U(1)q
Strong interactions: gluons - m, = 0

Electromagnetic interactions: photon - m, = 0
Weak interactions -

Due to the presence of a scalar field whose potential
spontaneously breaks the gauge symmetry of electroweak
interactions and gives origin to massive gauge bosons (W,Z)

The Higgs boson (H) is the physical
particle associated with such field
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Emphasizing the breadth of collider physics

Colliders may not be able to indirectly probe
scales as high as e.g. flavor physics, but they
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The Standard Model: so simple that it can fit on a mug!
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Higgs physics

identified as
central to the
Energy Frontier

physics program

Origin of EWSB?
Thermal History of Higgs Portal
Universe to Hidden Sectors?
Stability of Universe
Fundamental CPV and
or Composite? Baryogenesis
Origin of Flavor?




The origin of the SM Higgs pattern escapes the SM itself

The origin of SSB and ultimately of the EW scale is unexplained by the SM

» Why the Higgs potential? Why u?<0? 5 -
» Dynamical origin? What induces it? V(o) = n ¢T¢ T >‘(¢T¢)
» Cubic and quartic couplings, same A?

» Why M =125 GeV? — Hierarchy problem — Naturalness

» Mass of scalar not protected by symmetry, 1
. . h h 2 X 2
receives large quantum corrections —- - -—-- AMp < + My

— 16m?2

Yukawa interactions depends on arbitrary parameters, unexplained by the SM
» Why the hierarchy of Yukawa couplings < fermion masses?

L = y. Pl + h.c.
> Why flavor diagonal scalar couplings? Why only one scalar? vukawa = VijYLPYR ¢

( fermion masses
Mg

—511 ¢—>H+U§/

v

» Other sources of flavor mixing and CP violation? Vij =
» A new force all together?

Yukawa couplings



The LHC and its legacy



Ten years of LHC physics and looking ahead

Higgs physics has been at the core
of the LHC physics program

Run 2 un 4 - 5,
13.6 Tev 136140V
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Snowmass 2013/Previous P5
» Run 1: Higgs discovery \_/

» Run 2: Higgs couplings
e R = » outperformed expectations

HL-LHC CIVIL ENGINEERING:

> Run 3 to HL-LHC
» Higgs precision program

We are only here

Many years of HL running ahead of us

Snowmass 2021/Current P5
-» 2-fold increase in statistics by the end of Run 3

-» 20-fold increase in statistics by the end of HL-LHC!




MZooming in on couplings to probe the TeV scale

CMS, arXiv:2207.00043
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» Couplings to W/Z at 5-10 % » HL-LHC projections from partial Run 2 data (YR):
» 2-5% on most couplings
» < 50% on Higgs self-coupling.
» Full Run2 results drastically improve partial Run
2 results: better projections expected

> Couplings to 3" generation to 10-20%
> First measurements of 2" generation
couplings
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NLO QCD+EW or improved NLO (+NNLL)
(e.g. W/Z+j, ttbb, ttW, ttZ, tty, ...)

700 - — + -
Theory has also come a long way e s S e RS TTT
(. 5() ‘- et JAQ) - M- '.-'2 -4
. 1 gip - Q_:'.! \fg‘ = 13 TeV
5 T UL T 7 L - ] UL % (i‘)() ™ et JAD - Il'r -9
-—]O = =H ——t jug - Q
'8_ C  pp — H (NNLO+NNLL QCD + NLO EW) Vs=13 TeVg% 550 T o
30 Anastasiou et al. [1502.06056] == ﬂ }1}7 {“H { | ]
1 10F of | | ‘ Tz ol ) i ‘ 7
2 | pp—qqH (NNLOQCD + NLO EW) E ‘ 7 400 - -
o r E | | | f A : 2 a
pp — WH (NNLO QCD + NLO EW) I - — Qo —
1k pp — ZH (NNLO QCD + NLO EW) — = ':f :’ 2
E__pp — itH (NLO QCD + NLO EW) A B < -~ -+
2 . = < =
[ PP — bbH (NNLO QCD in 5FS, NLO QCD in 4FS) ol - 5 =
- . Kulesza et al. [1812.08622]
9| _| .
107¢ T R Bliss et al. [2102.08039]
T T T T S S R =
120 122 124 126 1 I\%B[G 3= —— | | |
QV']”‘ ‘ ' ‘ : ‘ : ‘ : ‘ : . _||||||JIII|||||||||III||||||||| ||||||||||:
LHC Higgs WG EE—— L % 0.8 99— H —~v (13 TeV)
e e e S— — - Qo rEFT,mH =125 GeV -
R o A A S S ] < = N3LL/4+N3LO E
03 " - — — 1: —— . :‘ B 0'65 = — - N*LL+NNLO -
JE oy Sosf I N.T B NNLL+NLO =
T = L. -
~ 0.4F + ATLAtS Preliminary 3
Several backgrounds also know at g (139857) E
o 5 =
= =
?\ :
Q =
~ -
)

0 10 20 30 40 50 60 70 80100 150 200
qr [GeV]



Run 2 and . .
Beyond SM-coupling rescaling

Model new physics by extending the SM Lagrangian by effective interactions (ex. SM EFT)

1 1 1
Ad_4£d = Lsm + K£5 + FEG + -

ﬁgﬁ\f/[ = Lsm + Z

d>4

La=3y c0®, o] =d

Expansion in (v, E)/A: affects all SM observables at both
low and high energy

» SM masses and couplings — rescaling
» Shapes of distributions — more visible in tails of distributions

Under the assumption that new
physics leaves at scales A > +/s

‘% Rescaling

[lustrative plot

EFT in the tails

pr(t,H)



Standard Model Production Cross Section Measurements ;' [z
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What is the path forwar
beyond the HL-LHC?

Reference

... to which we should add a unique
spectrum of SM measurements and
- BSM direct searches!
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Beyond the HL-LHC



Addressing the “Big Questions” and
“Exploring the unknown” are the main
scientific goals of the EF

Should be pursued following

Two main avenues

O
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Interaction
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Multibosons
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p ) Axion-like particles
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iggs couplings A
Matter Antimatter Asymmetry
Higgs mass Nature Nature of Dark Matter Missing E/p
of Higgs Origin of Neutrino Mass :
Higgs CP Origin of EW Scale . Long lived particles
; Origin of Flavor
Rare decays
Top SUSY
Physics Heavy gauge bosons
Top mass
"~ Leptoquarks
Top spin FCNC New scalars Heavy neutrinos

> Study known phenomena at high energies looking for indirect evidence of BSM physics
o Need factories of Higgs bosons (and other SM particles) to probe the TeV scale via precision

measurements

> Search for direct evidence of BSM physics at the energy frontier

o Need multi-TeV colliders



Beyond the HL-LHC: Precision and Energy

New physics can be at low as at high mass scales,
Naturalness would prefer scales close to the EW scale, but

the LHC has already placed strong bounds around 1-2 TeV.

4 Direct Searches

Depends on
collider
environment

W

Future
multi-TeV
colliders
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Higgs coupling measurements and direct searches
will complement each other in exploring the
1-10 TeV scale and beyond.
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In a simplified picture:

New physics at tree level:
SNsm™ 82ssm E2/M?

New physics at loop level:
Snsm™ 1/16m2 x g2g5\ E2/M?
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EF future colliders

b

hh ee= he

Schematic of an :
80 - 100 km N
long tunnel ¥

LSS1
(IP1-ee)
LSS8
(Collimation)
SPPC
P
LSS7
LSS3
[P4-pp) (IP2-pp)
"EPC~
LSSe6
(Collimation) (Abort)
LSS5
(IP3-ee)

Hadrons

© large mass reach = exploration?
» S/B ~ 10-19(w/o trigger)
© S/B ~ 0.1 (w/ trigger)

© requires multiple detectors
(w/ optimized design)

> only pdf access to /¢
© => couplings to quarks and gluons

Circular

© higher luminosity
© several interaction points

© precise E-beam measurement
( O(0.1MeV) via resonant depolarization)

» /s limited by synchroton radiation

Leptons

© S/B ~ | = measurement?
o polarized beams
(handle to chose the dominant process)
o limited (direct) mass reach
o identifiable final states
© => EW couplings

© easier to upgrade in energy
o easier to polarize beams
o‘“greener”: less power consumption®

> Iarge beamsthralung

*energy consumption per integrated Iumlnosnty is lower at circular colliders but the energy consumption per GeV is lower at linear colliders

Civil Engineering
Different Options
4/ Fraction 1/3-1/4-1/5
Pt2and P18

v

Feddwre Measuresments 9 Inst. Pascaly Dec. 4, 2019

5k
i Legend

e« CERN existing LHC
A Potential underground siting
e CLIC 380 Gev
CLIC1.5TeV
CLIC 3 TeV

Jura mguntams

SM21 added CCC (C3)




Snowmass 21:

Higgs-boson factories EF Benchmark Scenarios

(up to 1 TeV c.0.m. energy)

Colider  Type | 5 | PO | Lm Start Date Multi-TeV colliders
- + -1 :
e /e ab™" /IP | Const. | Physics (> 1 TeV c.o.m. energy)
HL-LHC pp | 14TeV 3 2027
ILC & C3 ee 250 GeV | £80/ £ 30 2 2028 2038
350 GeV :i:80/ + 30 0.2 Collider Type \/g P[%] Eint Start Date
. . e~ /et | ab™'/IP | Const. | Physics
500 GeV | £80/ £ 30 4 Y
1 TeV | 480/ 420 8 HE-LHC  pp 27 TeV 15
CLIC ee 380 GeV |  £80/0 1 2041 | 2048 FCC-hh  pp 100 TeV 30 2063 | 2074
CEPC e My 50 2026 | 2035 || [SppC  pp | 75-125 TeV | [ 1020 | [ 2055 |
2Mw 3 LHeC ep 1.3 TeV 1
240 GeV 10 FCC-eh 3.5 TeV 2
360 GeV 0.5 CLIC ce 15 TeV | £80/0 2.5 2052 | 2058
FCC-ee ee Mz 75 2033 2048 3.0 TeV +80/0 5
2Mw 5 j-collider _pp 3 ToV 1 2038 | 2045
240 GeV 2.5 10 TeV 10
2 Miop 0.8
p-collider  pp 125 GeV 0.02

Timelines are taken from the Collider ITF

Snowmass EF wiki: https://snowmass21.org/energy/start | report (arXiv: 2208.06030)
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Beyond the HL-LHC: proposed future colliders

LEPTON COLLIDERS
- Circular e+e- (CEPC, FCC-ee)
- 90-350 GeV

- strongly limited by synchrotron radiation
above 350- 400 GeV

- Linear e+e- (ILC, CLIC, )
+ 250 GeV —>1TeV
* Reach higher energies, and can use
polarized beams
. PHp-
- 3-30 TeV
HADRON COLLIDERS
» 75-200 TeV (FCC-hh)

Vs (GeV)

PROJECT READINESS IS VERY DIFFERENT

i ILC/C3/CLIC —

—
\

Muon *

3-30 TeV * HL-LHC

14 TeV
O((170)

Y FCC-hh

100 TeV
O(27k)

Higgs Factories

3/CLIC/CEPC/FCC-ee

Multi-TeV
colliders
O(1-100)
3
=
3
5
= 0.5-2 TeV
Qs O(5
g YILC/C
3 250-380 GeV
< O(1)
Q

>

#Higgs bosons (millions)




Ax/x_SM [%]

Reach of future colliders for Higgs couplings: a closer look

Q T T
Based on full Run 2 dataset analyses X< g3’ O
<4 3
eoe m
] N 7
100 N O 3
Q T O
O 5 =
10 - e 3 = 3
e Initial stages of future & o 2
g ' i : 50
s W 1LC/C3-250 + HL-LHC ete- machines = 2 8
1
:' M CEPC240 + HL-LHC !
= D =
L. ¥ CLIC 380 + HL-LHC % m
&k o  FCC-ee 240/360 + HL-LHC o o
-
hzz hww hbb htt hgg hcc hyy hyz hup htt
100 - W HL-LHC
M ILC/C3 250 + HL-LHC
W ILC/C3 500 + HL-LHC
B ILC/C3 1TeV + HL-LHC
B CEPC 240+ HL-LHC Final reach of all
M CEPC 360 + HL-LHC .
m LI 380+ HiLAHC considered
PELIESTeVir Ml future colliders
m FCC-ee 240+360 + HL-LHC
B FCC-hh + FCC-ee 240+360/FCC-eh
hzz hww hbb hte hgg hyy hee hup htt hvz r(tot) ® 11(125) + HL-LHC

00, K_hXX ® (10TeV) + HL-LHC



The case of e*e" Higgs factories

: N o
a N O W W,

—

Precision of Higgs boson couplings [%]

o
&)

o

Energy matters
top-Yukawa, HH,
extended Higgs sectors
need >500 GeV

- 10—
[ e G -
0] /4"'
8 sy, e
e} _~
E!' 1 ab" @ 500 GeV, P(e’,e)=(:0.8,0.3)
Model Independent EFT Fit LCC Physics WG g > e
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B OHLLHC ILC250 ®ILCs00 | 103 — o \ﬁ\._'h.
Bl HL-LHC ®ILC250 ® ILC500 ® ILC1000 x 1/10 E
dark/light: with/without BSM decays 8
« 1 0-1 N N N N N N
500 550 600
= F  P(e+,e)=(0.3,-0.8): — Higgs-strahlung (ZHH) \'s/ GeV
v 05F — WW-fusion (v,7,HH)
c F P(e+,e-)=(0.6,-0.8): ... Higgs-strahlung (ZHH)
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5 02 = S s
0.1F
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$200f %008 | =
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[)] L 200 [ ] =
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Focusing on final reach of e*e- machines

100 - B HL-LHC

1 1LC/C3 250 + HL-LHC
M 1LC/C3 500 + HL-LHC
N ILC/C3 1TeV + HL-LHC
EPC 240 + HL-LHC
PC 360 + HL-LHC

10 -

380 + HL-LHC
3TeV + HL-LHC
0.1 - I ‘ ‘ Ql-ee 240+360 + HL-LHC
HCC-hh + FCC-ee 240+360/FCC-eh
1(125) + HL-LHC
® p(10TeV) + HL-LHC

Ax/x_SM [%]

hzz

0.01 -

ILC/C3 reach beyond 500 GeV and upgrade to 1 TeV allows drastic improvements in measuring couplings
to W and top as well as more precision in a model independent measurement of the total width.

What about Higgs self-coupling?



The case of a Muon Collider .

W HL+p collg gy g ap W HL+p collygrey _qoapt
%R —10
([
o
1 : 1
([
([
o Kw Kz Kg Ky Kzy K¢ K¢ Kp Ky K, - °
10 ,,,, | ,,,,,,,,,,,,,, l Improvement wrt. HL-LHC |, ,,,,,,,,,,,,,,,,,,, — 10
1E IIFL ~IIH llf:L e - w4 — ;n;llﬂ=-1
Ke Kt Kp Ky K;
Snowmass 21 EF Higgs TG Report
g8 p Vs < 1-5TeV

(arXiv:2209.07510) &
MuC Forum Report
(arXiv:2209.01318)

Many stages/upgrades:

o 125 GeV on-Higgs resonace

o 3 TeV
o 10 TeV

o >10 TeV (14, 30, ...

Lepton collider

TeV)

o Cleaner environment - precision

... but high energy

o Pushing the EF = discovery
Competitive/complementary to ~100 TeV hadron collider

Contained size

o M,~ 200 m, - reduced synchrotron radiation (x 1.6 x10-)

New physics regimes
o E> /\EW
o EW radiation



Reach for Higgs self-coupling

collider Indirect-h hh combined
HL-LHC 100-200% 50% 50%
ILCas50/C3-250 49% — 49%
ILCs00/C>-550 38% 20% 20%
CLIC3gg 50% — 50%
CLICq500 49% 36% 29%
CLIC3000 49% 9% 9%
FCC-ee 33% - 33%
FCC-ee (4 IPs) 24% — 24%
FCC-hh - 2.9-55%  2.9-5.5%
u(3 TeV) - 15-30% 15-30%
©(10 TeV) - 4% 4%

ATLAS and CMS HL-LHC updated
FCC-hh updated arXiv:2004.03505

Added MuC reach:

B 16%

16 -

14+ ,
= 10 |
< gl FCC-hh |
=

6 Y ——————

3.7%

41 2.5%

9 1.2%

0 D—t

w3 pl0 wpld  p30

arXiv:2203.07256
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https://arxiv.org/abs/2203.07256

Beyond the HL-LHC: projections for Higgs couplings

LHC
e T e B——

2030 2040 2060
H couplings to: O(5-15)% O0(0.1-1)% O(1)%o
H self-coupling to <O(50)% 0(20)% O(1)%

From C. Vernieri —Snowmass 21 EF Workshop - Brown U. - March 2022



Constraining BSM via global EFT fits

1
Leg = Loy + P Z C;0; +hec. | + O(A_4)

F(_ ng’son ﬁ top_EW ﬂ

(c Ch,
e C’HWB C(HD Cll 1) "
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CHG k ! ! “ Cg’;
e | 2 EWPO .
Con Ce Cgq; C4 G5, Coa
Crn Co C5 C3  Co
(Cor 2
Higgs

Higgs couplings

Vff couplings Higgs couplings

Vif couplings

EW + Higgs

precision reach on effective couplings from SMEFT global fit

B HL-LHC S2 + LEP/SLD M CEPC Z,0,/WW,/240GeV,, | MILC 250GeV, M CLIC 380GeV,
(combined in all lepton collider scenarios) | ll CEPC +360GeV, M ILC +350GeV;,+500GeV, | Ml CLIC +1.5TeVy5
Free H Width MILC +1TeVg  VwGiga-Z | I CLIC +3TeVs

Il MuC 3TeV4 DwIFCC-ee
W MuC 10TeV 4o
W MuC 125GeV, 0,+10TeV 4o

1 no H exotic decay Il FCC-ee +365GeV, 5 subscripts denote luminosity in ab™', Z & WW denote Z-pole & WW threshold
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arXiv:2206.08326

EFT connects different processes with large correlations: pattern of

coefficients give insights on underlying BSM model



https://arxiv.org/abs/2206.08326

Interplay with top-quark

Parameter HL-LHC | ILC 500 | FCC-ee | FCC-hh
‘i /5 [TeV] 14 05 | 036 | 100
precision measu rements T —— Y 75 3 0
Top mass m; (%) 0.10 0.031 | 0.025 -
Left-handed top-W coupling C’gQ (TeV~2) 0.08 0.02 0.006 —
Right-handed top-W coupling Cyy (TeV=2) | 0.3 0.003 | 0.007 -
Stress testing the SM and Right-handed top-Z coupling C;z (TeV~2) 1 0.004 | 0.008 -
lori nomal lin Top-Higgs coupling Cy (TeV~2) 0.1 0.6
exploring anomalous couplings Four-top coupling cy; (TeV—2) 0.6 0.06 - 0.024
180 - H HL-LHC B HL-LHC + CEPC HL-LHC + FCC I HL-LHC + ILC HL-LHC + CLIC
| e .
10 w .Itg
<o
S a
— <~ 10980 o Q -
E e m Current 3 w G
o W ILC250 +ILC % @ L N
. m CEPC g £V
 FCC-ee 210 S = -
5> 3
170 - c YU N
1072 ) -g (.\!
E c 2
(@) X
10-s ML, e e e R jj Co  Co jj } jj o L:E E

\ | . \ , . | , . | . . , . L
50 100 150 200

my [GeV]

Operator Coefficients

arXiv:2209.08078



Coupling deviations from SM [%]

Disentangling models from EFT patterns
The “inverse Higgs” problem

N

o
N
(=~

- 'o\?' [ '§' 20 i T T T T T T T
: = : E : ILC 250 GeV, 2 ab™' + 500 GeV, 4 ab™': Composite example :
10 -— - 2 10 ;,_._ . —— UE) 10 __ |:| ILC precisions from full EFT fit __
R g : 9 - ——=—— model predictions ]
» @
L il ": § 0 :— . 5 Qfe==s=ssscsssssssnnnnnnnnnnnnnnnnnnnnnnnnn -
F 1 .g I ks X
- . i >
| i . 3 i
-10 N ILC 250 GeV, 2 ab”" + 500 GeV, 4 ab™: Singlet example ] 3_10 [~ ILC 250 GeV, 2 ab™ + 500 GeV, 4 ab™': 2HDM-Il example — -83—10 [ —
i : ILC precisions from full EFT fit L [ : ILC procisions from full EFT fit = i
: — 5 e =
-20 | ] ! ! ] 1 1 8 -20 | 1 ! 1 1 L - 8 -20 i 1 1 1 ] ] ] ]
T
bb cc ag WwWw Z2Z Y Hu bb cc gg WwWw Tt 27 YY up bb cc gg Ww TT 77 Yy uw
additional scalar snr.wglet 2HDM-II Composite Higgs
(ms=2.8 TeV, max mixing) (MH=600 GeV, tanp=7) (f=1.2 TeV)

Snowmass 2021: ILC white paper (arXiv: 2203.07622)

Examples to illustrate the different patterns of Higgs coupling deviations from different BSM models



BSM explorations: extended Higgs sectors
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https://arxiv.org/abs/2203.07261
https://arxiv.org/abs/2203.08206
https://arxiv.org/abs/2203.07535

Search Method

Examples of BSM model specific explorations

SUSY models Composite Higgs models

Snowmass 2021: Energy Fronteir Collider Sensitivities Composite Higgs, 20
- @ T ATL-PHYS-PUB-2018-021
strong production CERN-ACC-2018-0056
high mass splitting /W 1 Vs/2
stop 2-body N v & Left-to-right of 7
7 ATL-PHYS-PUB-2018-021 E Ellj.lnc/i ;élSStIT_ESOO
strong production W /% CERN-ACC-2019-0036 o ’
. et 2 | O
high mgtsjpsf_'gggg ~V's/2 = (new), FCC-ee (Co),
~Vs/2 CEPC (new), ILC1000
precision Higgs 1707.03399 (Cé), CLIC3000
_____________________________________________________________________________________________________ -
| CMS-PAS-FTR-22-001 B
_weak produ_ctjon \l Run-2 Extrapolation > L
high mass splitting /] . Run-2 Extrapolation =
Wino-Bino N 8
AM<750 GeV ~Vsi2 =
~V's/2 S
) S
weak production Run-2 Extrapolat!on
small mass splitting _ Run-2 Extrapolation
Higgsino Run-2 Extrapolation
AM =5 GeV ~V/s/2
2 4 6 8 10 12 14
Mass Reach [TeV]
—— LHC Limits "\ HE-LHC 27 TeV, 15ab CLIC3TeV,5ab '
777 Range of estimates /) FCC-hh 100 TeV,30ab ' [T FCC-ee 0.35 TeV, 12.6 ab TS|
_1 _ _
[ | HL-LHC14TeV,3ab  EEE |LC05TeV,4ab | KX CEPC0.24TeV, 10ab ' m. (TeV)

From Snowmass 21 EF BSM Topical Group Report



Examples of BSM general explorations

Identify important benchmarks, explore new collider options, focus on the physics messages

Heavy Bosons

|dentified simplified models:

Y—Universal Z, 20

. Dilepton 1.4}
e Dijets 2
1.0}

. Diboson ¢y 08}
(VV, Vh, etc) 0.6}

. Decays including
Heavy Neutrinos

Layout the basic reach of future collider programs
comprehensively in these simplified modes.

Resonance search and EFT searches are both needed.

arXiv:1910.11775

arXiv:2203.07256

Machine Type Vs JLdt Source Z' Model 5c 95% CL
(Tev) | (ab™) (Tev) | (Tev)
R.H. s> dijet | 4.2 5.2
HL-LHC pp 14 3 ATLAS | Zgu> 11 | 64 6.5
(el Zm> 11~ 6.8
EPPSU* | Z',.(g/=0.2) 6

ILC250/ ete" 0.25 2 ILC Zu> T | 49 7.7
cLic3so/

FCC-ce EPPSU* | 7', (g/=0.2) 7
HE-LHC/ pp 27 15 EPPSU* | Z'y,(87=0.2) 11
FNAL-SF ATLAS | Zgy-dete | 128 12.8

ILC ete 0.5 4 ILC Zu>THf- | 83 13
EPPSU* | Z',.(g/=0.2) 13

CLIC ete" 1.5 2.5 EPPSU* | 7', (g7/=0.2) 19
Muon Collider pt o 3 1 IMcC Z'ymiv(87=0.2) 10 20
ILC ete" 1 8 ILC Zu> Trf | 14 22
EPPSU* | Z',.(g/=0.2) 21

CLIC ete" 3 5 EPPSU* | Z'..(g,/=0.2) 24

R.H. Z'som > dijet 25 32

FCC-hh pp 100 30 EPPSU* Z'yninl87=0.2) 35
EPPSU | Zgu>1+1- | 43 43

Muon Collider Pt 10 10 IMCC 7' yil87=0.2) 42 70
VLHC pp 300 100 R.H. Z'ssm > dijet 67 87
Coll. In the Sea pp 500 100 R.H. Z o ~ dijet 96 130

Z Dbuiseaiou|

KYAIISUSS

<


https://arxiv.org/abs/1910.11775
https://arxiv.org/abs/2203.07256

Dark matter at colliders ez ones

Indirect
SPPC 125 TeV

SPPC 75 TeV

FCChh 100 TeV

FCCeh

Complementing observation in HL-LHC
MuonC 14 TeV

astrophysics experiments "MaonC 3 Tev

CLIC 3 TeV Kinematic limit, 0.5 X Eqy
CLIC 15 TeV

CLIC 0.38 TeV |
ILC 1 TeV

B X+MET inclusive

Disappearing track

[ ] Precision measurement

FCC—ee \

Probing interaction of DM with - — | i |
01 0.2 05 1 2

SM particles TV

wino 2 o~ Reach
Discriminating between different -
models $PPC 125 Tov

SPPC 75 TeV

ILC 05 TeV \ :
|

Thermal target

FCChh 100 TeV
FCCeh
HL-LHC

MuonC 14 TeV
MuonC 10 TeV
MuonC 3 TeV

Kinematic limit, 0.5 X Eqy
CLIC 3 TeV
CLIC 15 TeV |

38 Te \ | ] Precision measurement
Example of WIMP DM reach e Ty |

ILC 05 TeV |
arXiv:2210.01770 FCC—ee |

CEPC |

B X+MET inclusive

Disappearing track

Thermal target
0.1 05 1 5 10
m,(TeV)



https://arxiv.org/abs/1910.11775

Future of Perturbative QCD calculations

process

known

desired

pp— H
pp— H+j
pp— H+2j

pp— H+3j
pp— VH
pp—VH+j
pp— HH
pp — H +tt
pp— H+t/t

N°LOnrw, N2LO&Lp, NODLOGED)

N2LOwurr, NLOgep, NOYLOgepgew
NLO#uTL ® LOgen

N*LOSGp ) (incl), N2LOSGp ), NLOSw ™
NLOxrL, NLOGan

N2LOqcp + NLOgw, NLO%?, ;
N2LOqcp

N3LOuTL ® NLOqep

NLOqcp + NLOew, N?LOqep (off-diag.)
NLOgqcp

N“LOyrr (incl.), N2LOSS)
N2LOntL ® NLOgep + NLOgw
N2LOxrL ® NLOgep + NLOgw,
NLOGED

NLOqcp + NLOew

N?LOqcp + NLOew

NLOew

N2LOqcp

N’LOqcp, NLOgep + NLOgw

o o, uncertainty is a limiting factor in many measurements, e.g. Higgs

couplings, at the HL-LHC

pp—V

pp— VV'
pp—V+j
pp— V + 25
pp — V +bb

pp— VV' +1j
pp— VV' +2j
pp— WHW+ 4 2j
pp— WHW ™~ 4+ 2j
pp—>WHZ +2j
pp— ZZ +2j

pp = VV'V”
pp— WEW W
P — Y
pp—=>Y+3J

pp =YY +J

P =YYy

NSLOQCD, N(l’l)LOQCquEw, NLOgw
N?LOqcp +NLOgw , +NLOqep (99)
N?LOqcp + NLOgw

NLOqcp + NLOgw , NLOgw

NLOqcp

NLOQCD + NLOgw

NLOqcp (QCD), NLOgep + NLOgw (EW)
Full NLOQCD == NLOEW

NLOqcp +NLOgw (EW component)
NLOgqcp + NLOgw (EW component)

Full NLOQCD aF NLOEw

NLOqcp, NLOgw (w/o decays)

NLOqcp + NLOgw

N?LOqcp + NLOgw

N?LOqcp + NLOgw

N?LOqcp + NLOgw, + NLOgep (gg channel)
N?LOqcp

N3LOqep + N@PYLOgepgew, N2LOgw

NLOgqcp (gg,massive loops)
hadronic decays

N2LOqcp

NZLOQCD + NLOgw

N 2LOQ(: D

Full NLOQCD aF NLOEW

NLOqep + NLOgw

N 3LOQc D
N3LOQCD

N’LOqcp + NLOgw

Relative as(mz) uncertainty
Method Current Near (long-term) future

(1) Lattice 0.7% ~ 0.3% (0.1%)
(2) 7 decays 1.6% < 1.%

(3) QQ bound states 3.3% ~ 1.5%

(4) DIS & PDF fits 1.7% ~ 1% (0.2%)
(5) eTe™ jets & evt shapes  2.6% ~ 1.5% (< 1%)
(6) Electroweak fits 2.3% (= 0.1%)

World average 0.8% ~ 0.4% (0.1%)

pp — 2jets
pp — 3jets

N?LOgqcp, NLOgep + NLOgw
N*LOqcp + NLOgw

NBLOQCD +NLOgw

pp — tt

pp—tt+3j

pp — tt+2j
pp—tt+ 2
pp—tt+ W
pp — t/t

pp — tZj

N2LOqcp (w/ decaysi- NLOgw (w/o decays)
NLOqep + NLOgw (w/ decays, off-shell effects)
N2LOgqcp

NLOqcp (w/ decays, off-shell effects)

NLOgw (w/o decays)

NLOgcp (w/o decays)

NLOgqcp + NLOgw (w/o decays)

NLOqcp (w/ decays, off-shell effects)

NLOqep + NLOgw (w/ decays, off-shell effects)
N2LOqcp*(w/ decays)

NLOgw (w/o decays)

NLOgqcp + NLOgw (w/ decays)

N3LOQCD

N?LOqcp +NLOgw (w/ decays)
NLOgqcp + NLOgw (w/ decays)

N2LOqcp +NLOgw (w/ decays)
N2LOqcp +NLOgw (w/ decays)
N?LOqcp +NLOgw (w/ decays)

N?LOqep + NLOgw (w/o decays)

. FCC-ee: 3x1012 Z->qq at the Z pole, and Vs calibration 10’s keV provides

unparalleled a, precision = searches for small deviations from SM
predictions that could signal BSM

e Jet substructure techniques:

o Identification of g/g-initiated jets in - - H[> gg]Z[-> II]
o Identification of weak-strahlung emission, and g—>tt in jets
o Track functions in jet substructure



Ratio to baseline

Higgs production in gluon fusion @ LHC Ys=14 TeV

1 1 -_1-
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Future of PDF determination
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https://arxiv.org/abs/2204.07944

Setting priorities



In conclusion

The Higgs discovery has been fundamental in opening new avenues to explore physics
beyond the SM and the Higgs-physics program ahead of us promises to start answering
some of the remaining fundamental questions in particle physics.

Collider physics remains as a unique and necessary test of any BSM hypothesis.

Many new directions have been explored during the Snowmass 2021 exercise, building
on previous studies (ESG), and have indicated the need to explore the TeV scale beyond
LHC reach by pushing both precision (Higgs factories) and energy (multi-TeV colliders).

Increasing the accuracy on SM observables (Higgs, top, EW) could allow to test higher
scales: a factor of 10 in precision could allow to test scale in the 10 TeV range and betyond.

The possibility of reaching c.o.m. energies above 500 GeV in e+e- collisions is crucial to
improve the full spectrum of HL-LHC measurements, including top-Higgs and Higgs self-
coupling, as well as probing extended Higgs sectors and new physics that can elude the
LHC.



The Energy Frontier vision in a nutshell

It is essential to

e Complete the HL-LHC program,

e Start now a targeted program for detector R&D for Higgs Factories

e Support a fast start of the construction of a Higgs factory

e Ensure the long-term viability of the field by developing a multi-TeV energy frontier facility

such as a muon collider or a hadron collider.
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Timelines



Japan

China

CERN

USA

ri=

LHC

5 years

Bl Pproton collider
B Electron collider
E  Muon collider

EEEEN Construction/Transformation
Preparation / R&D

2038 start physics
ILC: 250 GeV
2 ab?

500 GeV
4 ab?

20km tunnel

40 km tunnel

31km tunnel

SppC: 75-125 TeV, 10-20 ab-!
[

2035 start physics

CepC: 90/160/240 GeV

100km tunnel [EFRYZPT ot

HL-LHC (14TeV, 3 ab™)

3.6TeV, 450 fb")

2048 start physics

100km tunnel, installation 350-365 installation
GeV 1.7

ab?

FCC-ee: 90/160/250 GeV
-150/10/5 ab!

Original timeline from ESG
Updated during Snowmass 2021
(see EF Report)

FCC hh: 100 TeV = 30 ab™!

2048 start physics

CLIC: 380 GeV 1.5TeV
1.5ab? 2:5¢abiL

29 km tunnel

3 TeV

11 km tunnel 5 abl

holding

50 km tunnel

2020

2030 2040 2050 2060 2070

IVIiuuIl cuilnuer

2080

Proposals emerging from Snowmass 2021 for a US based collider

2040 start physics
CCC: 250 GeV

CCC

5 years 8 km tunnel

2 ab?

550 GeV 2 TeV
4 ab? =4 ab™

Stage2
10 TeV;
~10ab?

10km & 16.5 km tunnels

. RF upgrade
Muon Collider

2045 start physics

muC:Stagel
13 years 4km & reuse Tevatron ring 3 TeV

Note: Possibility of

OR 4km+6km km ring 125 GeV or 1 TeV at Stage 1

2090

Renewed interest in lepton colliders:
need supporting R&D in near future

AEEEE IS TEEEEEEEE EEEEEEEEY: DT I EEE I EEEEE EEEE.

2020

2030 2040 2050 2060 2070

2080

2090




