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Outline of Part I

e Understanding the Electroweak Symmetry Breaking as a first step
towards a more fundamental theory of particle physics.

e The Higgs mechanism and the breaking of the Electroweak Symmetry
in the Standard Model.

—— Toy model: breaking of an abelian gauge symmetry.
— Quantum effects in spontaneously broken gauge theories.

—— The Standard Model: breaking of the SU(2);, x U(1)y symmetry.
—— Fermion masses through Yukawa-like couplings to the Higgs field.

e First step: calculate the SM Higgs boson decay branching ratios.



Some References for Part I

e Spontaneous Symmetry Breaking of global and local
symmetries:
An Introduction to Quantum Field Theory,

M.E. Peskin and D.V. Schroeder
The Quantum Theory of Fields, V. II, S. Weinberg

e Theory and Phenomenology of the Higgs boson(s):
The Higgs Hunter Guide,

J. Gunion, H.E. Haber, G. Kane, and S. Dawson
Introduction to the physics of Higgs bosons,

S. Dawson, TASI Lectures 1994, hep-ph /9411325
Introduction to electroweak symmetry breaking,

S. Dawson, hep-ph /9901280
Higgs Boson Theory and Phenomenology,

M. Carena and H.E. Haber, hep-ph /0208209



Breaking the Electroweak Symmetry: Why and How?

e The gauge symmetry of the Standard Model (SM) forbids
gauge boson mass terms, but:

Myy+ = 80.426 4 0.034 GeV and Mz = 91.1875 4+ 0.0021 GeV

Y
Electroweak Symmetry Breaking (EWSB)

e Broad spectrum of ideas proposed to explain the EWSB:
> Weakly coupled dynamics embedded into some more fundamental
theory at a scale A (probably ~ TeV):

— | Higgs Mechanism | in the SM or its extensions (MSSM, etc.)
—— Little Higgs models
> Strongly coupled dynamics at the TeV scale:

—— Technicolor in its multiple realizations.
> Extra dimensions beyond the 3+1 space-time dimensions



Different but related .....

o Explicit fermion mass terms also violate the gauge symmetry

of the SM:

—— introduced through new gauge invariant interactions, as dictated

by the mechanism of EWSB
—— intimately related to flavor mixing and the origin of CP-violation:

new experimental evidence on this side will give further insight.



The story begins in 1964 . ..
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Spontaneous Breaking of a Gauge Symmetry

Abelian Higgs mechanism: one vector field A#(z) and one complex
scalar field ¢(x):

EZEA—I—£¢

where

1 1
La=—7FWF,, = -7 (8 A — 8" A*)(3,A, — 0,4,)

and (DH=0" + igA*)
Ly = (D"$)"Dy¢ — V() = (D"¢)"Dpd — "¢ — \(¢*¢)”

L invariant under local phase transformation, or local U(1) symmetry:

d(z) — W)

Al(z) — A”(x)—l—é@“a(a:)

Mass term for A#* breaks the U(1) gauge invariance.



Can we build a gauge invariant massive theory? Yes.

Consider the potential of the scalar field:
V(p) = ?¢* ¢+ A(¢*¢)?

where A>0 (to be bounded from below), and observe that:
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e 11>>0 — electrodynamics of a massless photon and a massive scalar

field of mass pu (g=—e).

e 112 <0 — when we choose a minimum, the original U(1) symmetry
is spontaneously broken or hidden.
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. The ¢ field actually generates the correct transverse
structure for the mass term of the (now massive) A* field propagator:
—1

(AR (0) = gy (= Fg )




More convenient parameterization (unitary gauge):

el v 1

¢(z) = (v+ H(z)) — ﬂ(vﬂLH(fE‘))

The x(z) degree of freedom (Goldstone boson) is rotated away using gauge

invariance, while the original Lagrangian becomes:

2
1
L=La+ g; A AL+ 5 (0*HO,H +2p°H?) + ...

which describes now the dynamics of a system made of:

e a massive vector field A* with m2 = g%v?;
e a real scalar field H of mass m2%, =—2u?=2X\v?: the Higgs field.

4

Total number of degrees of freedom is balanced



Non-Abelian Higgs mechanism: several vector fields A%(x) and several
(real) scalar field ¢;(z):

L=LatLly . Lo=3(D'6)P —V(6) . V(6) = w6 + 56"

(u? <0, A>0) invariant under a non-Abelian symmetry group G:

- aqa ¢4 =T arqa
¢; — (1 +1iat?)i0; — (1 —a"T");59;

s.t. D,=0,+ gA*T*). In analogy to the Abelian case:
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TPy # 0| — massive vector boson + (Goldstone boson)

Tpy =0| —— massless vector boson + massive scalar field




Classical — Quantum : V(d) — Vers(ver)

The stable vacuum configurations of the theory are now determined by the
extrema of the Effective Potential:

Veff(gpcl) = _%Feff[gbcl] , Q¢ = constant = @
where
oW (J
Copsloal = WU = [ 0T @éats) . dalo) = 51 = Qo))

W|J] — generating functional of connected correlation functions

I'crfl¢ct] — generating functional of 1PI connected correlation functions

Ver f(sﬁcz) can be organized as a loop expansion (expansion in h), s.t.:

Veff(Spcl) = V(gocl) + loop effects

SSB —— non trivial vacuum configurations



Gauge fixing : the ¢ gauges. Consider the abelian case:

L=~ ¥+ (D6)* Dyt — V(6)
upon SSB:
(@) = = (v +61(2) + ida(@)
b
L= TP Fuy b 5(0%01 +gA*6:)" + 2(0402 — gA* (v + 61))° — V(0)

Quantizing using the gauge fixing condition:

1
G — ﬁ(ﬁﬂAu + fqubg)

in the generating functional

7 = O/DAD¢1D¢2 exp U dx (c— —02)] det (fsi)

(¢ — gauge transformation parameter)



C— 302 = —%AM (—g“’/82 (1 - —) 019" — (g )ng/) A,
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such that:
(AU R)A”(~R)) = g
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(P2(k)p2(=k)) = (c(k)

Goldtone boson ¢y, <=

longitudinal gauge bosons




The Higgs sector of the Standard Model :

SU2) x U(L)y =5 U(1)q

Introduce one complex scalar doublet of SU(2); with Y =1/2:
¢ 2 2
p=| o ) T £= (D"$) D¢ — p* ' — M9'9)
where D, ¢ = (0, —igA;T® —ig'YyB,), (19=0%/2, a=1,2,3).

The SM symmetry is spontaneously broken when (¢) is chosen to be (e.g.):

1 (o0 | =\,
<¢>_\/§<v> with ’U—<T) (u* <0, A>0)

The gauge boson mass terms arise from:

1 0
g(o v) (gALo" + ¢'By) (gA"a® + g’ B*) ( ) 4o

v

(D"¢)' Dy — -+

1 v?
— o t37 GH(AL)? + 9% (A0)° + (—gA; + ¢'Bu)?] + -+



And correspond to the weak gauge bosons:

1
L —(A1:|:A2) — | My = g%
I \[ 2
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0 _ 3 _ — 2 120
Z, = g2—|—g’2(gA“ gB,) — |Mg g%+ g3

while the linear combination orthogonal to Zg remains massless and
corresponds to the photon field:

1

. using the definition of the weak mixing angle, 6,,:

Ay (g'A5 +9B.) — |[Ma=0

/
g sin 0 9

/g2 + g2 ’ W = /g2 + g2

the W and Z masses are related by: | My = My cos 6,

cos b, =




The scalar sector becomes more transparent in the unitary gauge:

_ evX(@)T 0 SU(2) 1 0
#e) = V2 (U—i—H(x)) ¢<x>_ﬂ<v—|—H(x)>

after which the Lagrangian becomes

1 1 A 1
L=p*H? —\wH> - ~H*= - -M#H? - \/jMHH‘g — Z\H*
4 2 2 4
Three degrees of freedom, the x*(x) Goldstone bosons, have been
reabsorbed into the longitudinal components of the Wf and Zg weak

gauge bosons. One real scalar field remains:

the Higgs boson, H, with mass | M7 = —2u* = 2\v?

and self-couplings:
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From (D*¢)'D,¢ — Higgs-Gauge boson couplings:

VvH VvH H

. 2 /// . 2

MV 3% . MV j3%
} H=21—Yg ? = 21—%"¢
VV VV \\ H

Notice: The entire Higgs sector depends on only two parameters, e.g.

Mpyg and v

v measured in p-decay:

o= (vV3IGr)- 12 = 246 CeV SM Higgs Physics depends on My




: remember Higgs-gauge boson loop-induced couplings:

AN VL v.Z
H_____ y H_____
VAVAVAVAY; Y
(6600 9
H_____ Y
"0000> g

They will be discussed in the context of Higgs boson decays.



Finally: Higgs boson couplings to quarks and leptons

The gauge symmetry of the SM also forbids fermion mass terms

(mg, Q% uk, .. .), but all fermions are massive.

4

Fermion masses are generated via gauge invariant Yukawa, couplings:
EYukawa — _Pgéngcu‘}{ T FZJQZLdeJR - erjl_—’ngbHQ + h.c.

such that, upon spontaneous symmetry breaking:

o) = 0 ) — [ =Ty
x_\ﬁ v+ H(x) T

and



SM Higgs boson decay branching ratios

We can now calculate branching ratios and total width of the SM Hlggs

boson:
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Observe difference between light and heavy Higgs

These curves include:

tree level | +

QCD and EW loop corrections |.




Tree level decays: H — ff and H — VV

At lowest order:

I'(H — ff) = N.rm?2 33
( ff) i e 0%
IN(H —-VV) = 1 — 7+

(ﬁz —V 1 — Tiy Ty — 4m?/M12-I> 5W,Z:27 17 (Nc)l,qzl,g)

Ex.1: | Higher order corrections to H — gq

QCD corrections dominant:
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Consist of both virtual and real corrections:

Q Q
H--- H--- g H -~~~
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o Large Logs absorbed into M S quark mass

Leading Order: mo(p) = mo(mg) ( as (i) >_

as(mq)
Higher order: m = o (mq) L2 W/™)
g Q(p) =mq( Q)f (o (o) /)
where (from renormalization group equation)

25 \ 25

flx) = (Faj) 14+ 1.014x +...] for me.<pu<my
23 \ 28

flx) = (Fx) 141175z +...] for mp<pu<my
7 \T

flzx) = (§x) 14+ 1.398z+...] for pu>my

o Large corrections, when My > mg
mp(mp) ~ 4.2GeV — my(Mp ~ 100 GeV) ~3 GeV

Branching ratio smaller by almost a factor 2.
e Main uncertainties: o (Myz), pole masses: m.(m.), mp(mp).



Ex. 2: | Higher order corrections I'(H — gg)

Start from tree level:

(600> 9
H_____ 7
"0000> g
D(H — gg) = Sr0aMin |~ 4o
— = T
gg 36\/57'('3 - q q

where 7,=4m; /M}; and

0?2 1 >
arcsin NG > 1

f(r) = j—
—% ln}i’\/—i:—:—m T<1

Main contribution from top quark — optimal situation to use
Low Energy Theorems to add higher order corrections.



QCD corrections dominant:

q
BT g g m<
tb tb =

H---< 994, H--- 9 H--- 4

Difficult task since decay is already a loop effect.

However, full massive calculation of I'(H — gg(q), qGg) agrees with
ms > My result at 10%

s

(NL,)
I'(H — g9(q),939) = T'to(atN") (Mg)) [1 + B a—]

(VL) Mi<ims 945 - gNL

Dominant soft /collinear radiation do not resolve the Higgs boson coupling

to gluons — QCD corrections are just a (big) rescaling factor



NLO QCD corrections almost 60 — 70% of LO result in the low mass region:
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solid line — full massive NLO calculation
dashed line — heavy top limit (M% < 4m?)

NNLO corrections calculated in the heavy top limit: add 20%

— perturbative stabilization.



Low-energy theorems, in a nutshell.

e Observing that:
In the pg — 0 limit: the interactions of a Higgs boson with the SM
particles arise by substituting

In practice: Higgs taken on shell (p%, = M%), and limit py —0 is limit of
small Higgs masses (e.g.: M7 < 4m?).

e Then
0

1 X —-Y+H)
im AX =Y + ‘DI,

pa—0

(X —=Y)

very convenient!

e Equivalent to an Effective Theory described by:

O GG, (14 0(0))

including higher order QCD corrections.

Lepr =



For completeness:

GFCVQM?I
128273

D(H — yy) = > NepeFAf (ry) + Afj (Tw)

f

where (f(7) as in H — gg):

AJ@ = 2714+ (1 —=7)f(7)]
AL () = —[2437+37(2—=1)f(7)]

I'H — Z~v) =

G2 M2,aM3 M2\’
F 6111;4 H ( Z) ZA?(Tf,)\f)—l—AﬁI/(TW,AW)

f

where the form factors A]{? (7, A) and A{fi,(7,\) can be found in the
literature (see, e.g., M. Spira, hep-ph/9705337).

For both decays, both QCD and EW corrections are very small (~ 1 — 3%).



Present theoretical accuracy on SM Higgs branching ratios

o

- bb —

SM Higgs Branching Ratio
[y
=
I
+

10°
100 110 120 130 140

Example: My =120 GeV

Decay mode: bb WW* 1tr~ cc 99 Yy

Theory 1.4% 23% 23% 23% 57% 2.3%

Mainly due to: pole masses m. and my, and a,(u).



