$t\bar{t}H/tH$: Theory Overview

Laura Reina (FSU)

Theory conveners: S. Pozzorini, L. Reina

Experimental conveners: S. Guidon (ATLAS), C. Neu (CMS)

The 10th Workshop of the LHC Higgs Cross Section Working Group

CERN, July, 16 2015

Challenges, Strategy, and Goals for Run 2

Challenges

- ▶ describe large multi-particle backgrounds (automated NLO, NLO matching and merging with PS, ...)
- ▶ understand and estimate theoretical uncertainty.

• Strategy and Goals

- ▷ pinpoint most relevant processes:
 - $-t\bar{t}H$
 - $-t\bar{t}+b$ jets, $t\bar{t}+$ jets
 - $-t\bar{t}W/Z$
 - $-t\bar{t}\gamma, t\bar{t}\gamma\gamma$
 - -tH
- ▶ for each process:
 - compare available tools (NLO Monte Carlo), using a common setup
 - study the most relevant sources of theoretical uncertainty
 - agree on a recommendation to the experiments

sequence of very delicate and process-dependent steps!

Overview of progress made since January meeting

→ For a review of existing theory results see Stefano's talk at January meeting

- We have completed a first round of talks and started a new one
 - ▶ very good participation and focus (sign-up mailing list);
 - ▶ very productive to prioritize important issues and establish connections with ATLAS/CMS;
 - \triangleright detailed minutes of each meeting available on line \rightarrow basis for YR4.
- Emphasis has been on:
 - ▶ backgrounds and NLO matching+merging
 - ▶ tools (NLO Monte Carlo) comparison based on standard setups
 - ▶ calculation of missing effects (ex.: QCD+EW, signal-backgd interf.)
- Main progress:
 - \triangleright signal \rightarrow extensive testing of tools performed $[\hookrightarrow$ See Stefan's talk]
 - \triangleright background \rightarrow started tool comparison for NLO $t\bar{t} + b$ jets
 - ightharpoonup QCD+EW corrections to $t\bar{t}H$ and $t\bar{t}V$ (V=W,Z)
 - [automated in MadGraph5_aMC@NLO, SHERPA+OpenLoops, and Recola]
 - \triangleright signal-background interference for $t\bar{t}bb$ final state [Feger et al.]
 - \triangleright $t\bar{t}H$ with off-shell top decays [Feger et al.]
 - □ completed NLO+PS tH implementation [MadGraph5_aMC@NLO]

Proposed comparison of $t\bar{t} + b$ jet NLO Monte Carlo simulations

[Full details at: https://twiki.cern.ch/twiki/bin/view/LHCPhysics/ProposalTtbb]

- Comparing:
 - $\begin{array}{ll} \rhd & \texttt{SHERPA+OpenLoops} \ (m_b>0) \\ \rhd & \texttt{MadGraph5_aMC@NLO} \ (m_b>0) \\ \rhd & \texttt{PowHel} \ (m_b=0) \\ \end{array}$
- General setup recommendation: non trivial, not just a choice of parameters Ex.: b quarks can come from many sources:
 - > matrix element
 - parton shower
 - ▶ top decays

In order to test different NLO Monte Carlo, as well as to separate $t\bar{t} + b$ jets from inclusive $t\bar{t}$ + jets, a setup may be chosen to exclude some of these sources (e.g. switch off top decays, ...)

- Consistent heavy-flavour treatment: $N_f = 4 \text{ vs } N_f = 5 \rightarrow \alpha_s \leftrightarrow \text{PDF}$
- Consistent b-jet definition:
 - \triangleright anti- k_T (R=0.4), full 4-momentum recombination
 - \triangleright b jet = jet that involves one or more b quarks among the constituents
 - N_b = number of b jets with $p_T > 25$ GeV and $|\eta| < 2.5$

- Coherent treatment of theoretical uncertainty across different tools
 - $\mu_R = \langle E_T \rangle_{\text{geom}}, \, \mu_F = \mu_Q = H_T/2$
 - ▶ scale variation (follow HXSWG recommendation)
 - ▶ PDF variation (follow HXSWG recommendation)
- Check benchmarks:
 - ▶ fixed order LO, NLO (no shower)
 - ▶ parton shower with no hadronization/UE/top decays
 - \triangleright samples with different numbers of b jets
 - ▶ full Monte Carlo simulation
- Relevant runcards, Rivet analysis, results will be public
 - > serve as benchmarks for validation of ATLAS and CMS simulations
- Recommendation (in case of small deviations): what is the best tool? "accuracy" is not "precision" ...
 - ▶ the most precise (theoretically) or the most tunable?
 - ▶ the one that better reproduces the data?
 - ▶ what if there are not enough data? like in our case ...
 - \triangleright the one that does the best job in $t\bar{t}$ + jets? but, they are different processes ...
 - **>** ...
 - \hookrightarrow Stefan's talk will offer several examples
- \hookrightarrow We are planning to have a similar exercise for $t\bar{t}$ + jets, $t\bar{t} + V$, and $t\bar{t} + \gamma(s)$

Off-shell $t\bar{t}H$ production and decay

[Denner, Feger, Scharf, arXiv:1412.5290, Denner and Feger, arXiv:1506.07448]

Full
$$2 \to 8$$
 process $pp \to t(bl^+\nu)\bar{t}(\bar{b}jj)H(b\bar{b})$ at LO

- ▶ include all possible channels with/without top and Higgs resonances
- ▶ include all QCD and EW contributions to matrix elements and interferences

matrix-element order	$O(\alpha_s^3 \alpha)$	$O(\alpha_s^2 \alpha^2)$	$O(\alpha_s \alpha^3)$	$O(\alpha^4)$
$t\bar{t}H(b\bar{b})$ signal			×	×
$t\bar{t}b\bar{b}$ background		×	×	×
full process $(l^+\nu + 2j + 4b)$	×	×	×	×

▶ Results for 13 TeV LHC:

- \rightarrow negligible $t\bar{t}H$ signal-background interference
- \rightarrow significant -8% interference between QCD and EW contributions to $t\bar{t}bb$ background (from W exchange in t-channel)
- \rightarrow significant +11% enhancement in $t\bar{t}b\bar{b}$ background from diagrams without top resonances

Full $2 \to 7$ process $pp \to t(be^+\nu_e)\bar{t}(\bar{b}\mu^-\nu_\mu)H$ at NLO in QCD

- ▶ include all non-resonant effects, off-shell effects, and interferences
- ▶ effects of only 1% on total cross section

NLO QCD predictions for $pp \to tHj$ at 13 TeV

[Demartin, Maltoni, Mawatari, Zaro, arXiv:1504.00611]

Ingredient of the calculation

- ▶ NLO and MC@NLO predictions
- ▶ t-channel and s-channel contributions
- ▶ comparison of 4F and 5F schemes
- \triangleright uncertainties from scale variations, PDFs, α_s , m_t , m_b

NLO cross sections and uncertainties at 13 TeV

- b low scale $\mu = (m_H + m_t)/4$ in order to obtain satisfactory 5F-4F agreement (within 5% at NLO)
- ▶ NLO corrections reduce scale dependence from 25% (4F scheme) to 5% (both schemes)

NLO QCD+EW corrections for $t\bar{t} + H/Z/W$ production

[Frixione, Hirschi, Pagani, Shao, Zaro, arXiv:1504.03446]

$\sqrt{s} = 13 \text{ TeV}$	$t ar{t} H$	$tar{t}Z$	$t ar{t} W^+$	$t ar{t} W^-$
NLO scale uncertainty	[+7,-11]%	[+13,-16]%	[+14,-14]%	[+15,-14]%
LO QCD-EW interference	+1.2%	0%	0%	0%
NLO EW corrections	-1.2%	-3.8%	-7.7%	-6.7%

- ▶ inclusive cross section: NLO EW corrections ≪ NLO QCD uncertainty
- ▶ Boosted regime: $p_t, p_{\bar{t}}, p_H \ge 200 \text{ GeV} \Rightarrow 8 (11\text{-}20)\%$ negative corrections for $t\bar{t}H (t\bar{t}V)$

Plan towards YR4

- Report results of tool comparison (see $t\bar{t} + b$ -jet discussion) for
 - $\triangleright t\bar{t} + b$ jets
 - $\triangleright t\bar{t} + \text{jets}$
 - $\triangleright t\bar{t} + H/Z/W$
 - $\triangleright t\bar{t} + \gamma(s)$

coordinating with experimental benchmark validation.

Emphasis will be put on coherent definition of theoretical uncertainties.

- → Some of these studies will be coordinated with MC studies within the Les Houches 2015 Workshop.
- Review of theoretical results with focus on more recent ones, such as:
 - ▷ NLO QCD predictions for $pp \to tH + j$ at 13 TeV [Demartin et al. \to MadGraph5_aMC@NLO]
 - \triangleright Off-shell $t\bar{t}H(b\bar{b})$ production and decay: interference effects between signal and background (LO) [Denner et al.]
 - \triangleright Off-shell $t\bar{t}H$ production with top leptonic decays at NLO in QCD [Denner et al.]
 - ▷ NLO QCD+EW corrections to $t\bar{t} + H/Z/W$ production [Frixione et al. \rightarrow MadGraph5_aMC@NLO]