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• Main ideas.
• Main strategies.
• Some examples: from Fermi theory to the SM to the SMEFT.

Introduction to EFT in particle physics

• The SM: brief review, strengths and weaknesses.
• Adding  SMEFT interactions, how and why.

Constructing the SMEFT 

• SMEFT effects on SM parameters and SM interactions.
• Calculating observables in the SMEFT.

The SMEFT hands on

• Global fits of collider observables (EW, Higgs, top), flavor 
observables, low energy observables.

• Matching to UV models.

Constraining SMEFT interactions 



SMEFT: dim 6
Very similar considerations leads to identify a basis of 
dim=6 SMEFT operators.
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Dµ ')(ūp�µur)

Q'WB '†⌧ I'W I
µ⌫B

µ⌫ QdW (q̄p�µ⌫dr)⌧ I'W I
µ⌫ Q'd ('†i

$
Dµ ')(d̄p�µdr)

Q'fWB '†⌧ I'fW I
µ⌫B

µ⌫ QdB (q̄p�µ⌫dr)'Bµ⌫ Q'ud i(e'†Dµ')(ūp�µdr)

Table 2: Dimension-six operators other than the four-fermion ones.

3 The complete set of dimension-five and -six operators
This Section is devoted to presenting our final results (derived in Secs. 5, 6 and 7) for the basis
of independent operators Q(5)

n and Q(6)
n . Their independence means that no linear combination

of them and their Hermitian conjugates is EOM-vanishing up to total derivatives.
Imposing the SM gauge symmetry constraints on Q(5)

n leaves out just a single operator [20],
up to Hermitian conjugation and flavour assignments. It reads

Q⌫⌫ = "jk"mn'
j'm(lkp)

TClnr ⌘ (e'†lp)
TC(e'†lr), (3.1)

where C is the charge conjugation matrix.2 Q⌫⌫ violates the lepton number L. After the
electroweak symmetry breaking, it generates neutrino masses and mixings. Neither L

(4)
SM nor

the dimension-six terms can do the job. Thus, consistency of the SM (as defined by Eq. (1.1)
and Tab. 1) with observations crucially depends on this dimension-five term.

All the independent dimension-six operators that are allowed by the SM gauge symmetries
are listed in Tabs. 2 and 3. Their names in the left column of each block should be supplemented
with generation indices of the fermion fields whenever necessary, e.g., Q(1)

lq ! Q(1)prst
lq . Dirac

indices are always contracted within the brackets, and not displayed. The same is true for the
2
In the Dirac representation C = i�2�0

, with Bjorken and Drell [21] phase conventions.
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1–4: Bosonic Operators
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Table II List of all baryon and lepton number conserving SMEFT operators at mass-dimension six in the Warsaw basis
(Grzadkowski et al., 2010). The division into classes 1–8 is adopted from (Alonso et al., 2014b) and further refined according to
the chirality of the fields. It is also marked which classes are potentially tree-generated [PTG] and which are loop-generated [LG]
according to (Arzt et al., 1995; Einhorn and Wudka, 2013).

operators of the original SILH set, was constructed in
(Elias-Miró et al., 2014), see also (Contino et al., 2013).
An extensive discussion about the basis choice in the
SMEFT can be found in (Passarino, 2017).

The Green’s basis (Gherardi et al., 2020) is another
common set of SMEFT operators. Although constituting
a complete set of operators, it is not a “minimal” basis as it
contains redundancies. The Green’s basis is an extension
of the Warsaw basis by all the operators that are removed
from the latter by the equations of motion. Therefore,

the operators in the Green’s basis are only independent
under IBP but not under field redefinitions. This basis
is often convenient for SMEFT matching computations.
In functional matching the effective Lagrangian obtained
by integrating out some heavy particles is usually in the
Green’s basis (up to IBP). Also the diagrammatic off-shell
matching procedure involves the operators of this basis.
(See Sec. VI.B for more details.) The results from the
matching computations in the Green’s basis can then be
converted to the minimal Warsaw basis using the basis

“Warsaw” or GIMR basis: most commonly used

Grzadkowski, Iskrzynski,  
Misiak, Rosiek, 1008.4884

With respect to the dim=5 case,  the problem arises of 
identifying a minimal set of independent operators.

(59 operators excluding L- and B-violating ones and 
suppressing flavor indices).

Considering the flavor structure of the operators:
2499 couplings out of which 1350 are CP-even and 
1149 are CP-odd. 



Effects of SMEFT interactions - recap 

§ Effective operators at Λ!" induce “direct” and “indirect” contributions of their 
Wilson coefficients in physical observables.

Modify existent interactions
+

New EFT interactions

Shift fields and parameters from 
the SM onesMotivation:

3

EFT effects in Lagrangian EFT effects in 
fields and 

parameters

EFT effects in 
interactions

EFT effects in 
probability 
amplitudes

EFT effects in 
physical 

observables

Current constraints in effective 
coefficients are obtained when 
expanding up to linear order

small coefficient ⟶ weakly coupled interaction

large coefficient ⟶ strongly coupled interaction
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Probability amplitudes

Physical observables

SMEFT predictions 

Fields and parameters

Interactions



Constraining 
the SMEFT

• Bottom-up: Global fits of collider observables 
(EW, Higgs, top), flavor observables, low energy 
observables.

• Top-down: Matching to UV models.



The full picture

(SM)EFT
(UV)

LEFT
(t,H,W,Z)

LUV

LEW
(t,H,W,Z)

Lb (B)

Lc (D)

Ls (K)

Connecting far apart scales (from BSM to flavor) naturally lends itself to the EFT framework

Heavy physics decouples and leaves  
effective contact interactions of  dim > 4

RGE EFT operators in
terms of SM fields

WC depend on 
mt, MW,MZ,MH, …MX

b

c

𝜒EFT

RGE

of the corresponding (effective) theory



Global fits of the SMEFT

• Bottom-up approach: based on symmetry assumptions used in ℒ#$!%&.
• Effects of new physics can then be constrained using the broad spectrum of 

precision measurement available from EW, Higgs, top, flavor physics and more.
• With increasing precision in both theory and experiments, constraints could 

start to show intriguing patterns and guide future explorations.



Bottom-up: global fits of the SMEFT

SMEFT
(UV)

LEFT
(t,H,W,Z)

LUV

LEW
(t,H,W,Z)

Lb (B)
Lc (D)

Ls (K)

Connecting far apart scales naturally lends itself to the EFT framework

𝑪𝒊,𝒅𝑺𝑴𝑬𝑭𝑻(𝜦𝑼𝑽) (from matching to UV theory)

All fit observables are calculated in terms of 𝑪𝒊,𝒅𝑺𝑴𝑬𝑭𝑻 𝜦𝑬𝑾

Evolved to 𝑪𝒊,𝒅𝑺𝑴𝑬𝑭𝑻 𝜦𝑬𝑾  
using RGEsolver++

Match to LEFT operators to 
calculate flavor observables

Based on 1-loop SMEFT 
anomalous dimension

Notice that the LO (1-loop) evolution requires tree-level 
initial conditions at Λ*+ 	and matrix elements at Λ,-	, 
while 1-loop initial conditions and matrix elements 
require NLO (2-loop) evolution.

Jenkins, Manohar, and Trott, 
1308.2627, 1310.4838,1312.2014Di Noi and Silvestrini, 2210.06838

Jenkins, Manohar, Stoffer, 
1709.04486, 1711.05270

Matchmakereft, 2112.10787  
MATCH2FIT, 2309.04523

Will be constrained 
by the fit



Need a framework
Statistical framework based on a Bayesian MCMC 
analysis as implemented in 
BAT (Bayesian Analysis Toolkit)
Caldwell et al., arXiv:0808.2552 

Supports SM (fully implemented) and BSM models, in 
particular the dim-6 SMEFT 

Used for several global fit and future collider projections

New release will include EW, Higgs, top, and flavor 
observables in the SM and the SMEFT with
q SM predictions at NLO or higher
q SMEFT at tree level (dim-6 operators only)
q RGE running of the SMEFT Wilson coefficients
q Linear and quadratic effects from dim-6 operators

http://hepfit.roma1.infn.it 

J. De Blas et al., 1910.14012

Other existing frameworks for SMEFT global fits:
SMEFiT, Celada et al. 2105.00006, 2302.06660, 2404.12809
Fitmaker, Ellis et al. 2012.02779
Allwicher et al, 2311.00020 
Cirigliano et al. 2311.00021
Bartocci et al. 2311.04963

http://hepfit.roma1.infn.it/


Fit EW, Higgs, top, DY, di-boson, flavor observables

• EW precision observables
• Z-pole observables (LEP I, LEP II, SLD)
• 𝑀!, Γ!	(Tevatron, LHC)

• Higgs boson observables
• Signal strengths. 
• Simplified Template Cross Sections (STXS)

• Top quark observables
• 𝑝𝑝 → 𝑡 ̅𝑡, 𝑡 ̅𝑡𝑍, 𝑡 ̅𝑡𝑊, 𝑡 +𝑡𝛾,𝑡𝑍𝑞, 𝑡𝛾𝑞, 𝑡𝑊,…

• Drell-Yan, Di-boson measurements
• 𝑝𝑝 → 𝑊, 𝑍 → 𝑓"+𝑓#
• 𝑝𝑝 → 𝑊𝑍,𝑊𝑊, 𝑍𝑍, 𝑍𝛾

• Flavor observables 
• DF=2: ∆𝑀$!,# , 𝐷

% − +𝐷%, 𝜀&
• Leptonic decays: 𝐵',) → 𝜇*𝜇+, B → 𝜏𝜈, 𝐷 → 𝜏𝜈, K → 𝜇𝜈, π → µν	
• Semi-leptonic decays: 𝐵 → 𝐷(∗)𝑙𝜈, 𝐾 → 𝜋𝜈𝜈̅, 𝐵 → 𝐾𝜈𝜈̅, 𝐵, 𝐾 → 𝜋𝑙𝜈
• Radiative B decays (𝐵 → 𝑋),'𝛾)

Constraining new physics through the spectrum of LHC measurements and beyond



SMEFT predictions

A given observable will be written as

SM: including SM 
higher-order corrections SMEFT: tree level

Observables have been calculated either analytically and via parametrizations obtained 
using various tools (MG5_aMC@NLO with SMEFTci2, a new UFO file developed for this 
study, Feynart+Feyncalc for loop-induced Higgs decays, …)

Including direct and indirect SMEFT effects from 
dim-6 operators up to O(1/L^4) [by A. Goncalves]

See also, SmeftFR-v3, Dedes et al. 2302.01353



8

• Z-pole observables, W observables 
• Fully analytic expressions

W±

Z

Example 1: EW precision observables
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• Z-pole observables: effective couplings

tree-level relations

e.g.
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• Z-pole observables: effective couplings

Left & Right couplings Vector & Vector-Axial couplings 



• W-pole observables:

• Z-pole observables: EFT expansion

For example,

And most generally,

13
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EW observables: adding quadratic terms
Typical effect: lifting degeneracies among contributing coefficients

O(1/Λ⁴) :    degeneracy is (analytically) lifted

O(1/Λ²) :    Constrain 8 independent relations
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EW observables: adding quadratic terms

• Preliminary Global Fit of EW observables at quadratic order in the d=6 SMEFT:

O(1/Λ²) O(1/Λ⁴) original-representation O(1/Λ⁴)   hat-representation

Fit parameters      Analytically     Numerically

         ≤8 
         >8 

Fit parameters      Analytically     Numerically

         ≤8 
         >8 

Fit parameters      Analytically     Numerically

         ≤8 
         >8 

PRELIMINARY

PRELIMINARY

PRELIMINARY



• Higgs-boson production cross-sections and branching ratios :

|   15   ||    Angelica Goncalves Dos Santos    |     Dissertation Defense    |    July 2, 2024.

Example 2: Higgs observables



|   26   ||    Angelica Goncalves Dos Santos    |     Dissertation Defense    |    July 2, 2024.

Higgs-boson Observables: exp. measurements

• Higgs-boson inclusive and fiducial 𝝁A𝒔 measured by ATLAS and CMS:



• Higgs-boson production cross-sections and branching ratios

|   16   ||    Angelica Goncalves Dos Santos    |     Dissertation Defense    |    July 2, 2024.

SMEFT Predictions: Higgs-boson Observables

• Signal strength modifiers:

With SMEFT expansion:

• Production cross-sections as inclusive or fiducial observables                
through Simplified Template Cross-Sections (STXS) 

• SMEFT predictions obtained differently depending on their 
complexity: Analytic  vs. Numeric computations with Madgraph

“Building blocks”

[J. Alwall, et al, 
arXiv:1405.0301]



|   29  ||    Angelica Goncalves Dos Santos    |     Dissertation Defense    |    July 2, 2024.

Global fit: Higgs-boson Observables

• Higgs-boson inclusive and fiducial 𝜇A𝑠 measured by ATLAS and CMS

• STXS improve constraining power

•                                                   
unconstrained by EWPO+Higgs

• Correlation on WCs:



Global fit EW + Higgs + Top + …
• Increasing constraining 

power when adding classes 
of observables

• Increased correlation 
among WC

• RGE evolution increases 
relations among WCs

Highly constrained from ggH
RGE effects visible

++

++

★★

++ ++ ★★ATLAS CMS NNLOQCD+NLOEW

450 500 550 600 650 700 750

200

250

300

350

400

450

σttW+[fb]

σ
tt

W
-
[f

b
]

Effect of Vtt (V=Z,W,g) Driven by EW
Effect on H to bb 



Adding flavor observables

[Allwicher et al., arXiv:2311.00020]
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Figure 5 Bounds on the effective scales of the SMEFT four-
quark operators Q

(1)

qq and Q
(1)

qd
, for different flavor indices, as

reported on the horizontal axis between square brackets (the
bounds are 95%C.L. limits for effective scales defined as in
Table VI). For left-handed fields, the flavor indices refer to the
down-quark mass-eigenstate basis. The bounds “with U(2)

5”
(brown bars) are obtained incorporating in the operators one
or more U(2)

5 breaking terms, according to the rules discussed
in Sect. III.C.2. The observables used to derive the bounds
are also indicated.

In the same table also the terms obtained with one
V spurion, or two of them and one � spurion are shown.
The higher-dimensional operators built in terms of a sin-
gle Vq,` spurion contribute to flavor-violating transitions
which involve only left-handed fields and connect only the
2 $ 3 sectors in the interaction basis. Considering terms
with two Vq spurions is the analog of considering two
Yu insertions in MFV. Compared to the latter case, the
U(2)5 hypothesis leads to more freedom (differentiating,
for instance, effective operators contributing to flavor-
violating process in B- and K-meson physics) but also
more terms. This latter statement can be understood by
looking at the number of independent invariant q̄r�µqp
bilinears in the two cases:18

q̄r�µqr
q̄r(YuY †

u
)rp�µqp

����
U(3)5

!

q̄3�µq3
q̄i�µqi
q̄i(Vq)i�µq3 + h.c.
q̄i(Vq)i�µ(V †

q
)jqj

��������
U(2)5

In Fig. 5 we illustrate more concretely some of these
features showing bounds on two representative four-quark
SMEFT operators, Q(1)

qq and Q(1)

qd
(see Tab. II), for dif-

ferent flavor indices. The strong bounds on the effective
scales exceeding 100 TeV (light yellow bars) are those

18 Here the flavor indices {r, p} run from 1 to 3, whereas {i, j} only
between 1 and 2.

obtained without any symmetry hypothesis. They cor-
respond to flavor combinations leading to un-suppressed
tree-level contributions to specific meson-antimeson mix-
ing amplitudes. By contrast, once the suppression due the
U(2)5 breaking spurions is taken into account, the same
observables leads to bounds on the effective scales below
10 TeV. It is interesting to note that these bounds are
comparable to those obtained by direct searches for flavor-
conserving combinations involving only third-generation
fermions, which are the most severely constrained by
high-energy LHC data.

We stress that the hypothesis of a U(2)5 flavor sym-
metry broken by the minimal set of spurions in Eq. (3.9)
naturally implies lepton flavor violation in charged lep-
tons. This is controlled by the size of V` and se, which
are left unconstrained by the SM Yukawa couplings. This
is one of the most evident differences between the gen-
uine U(2)5 approach and the non-linear MFV hypothesis
(Feldmann and Mannel, 2008; Kagan et al., 2009).

3. Other options and running

The U(2)5 case discussed above is the prototype of a
series of symmetry groups providing a suppression similar
to MFV in the quark sector, but allowing more general
breaking terms. The common ground is the presence of
the (chiral) non-Abelian group U(2)3 acting in the quark
sector. The variations come from obtaining this group as
a subgroup of possible larger symmetries, such as U(2)2⇥
U(3)d or U(2)3 ⇥ U(1)d (Faroughy et al., 2020; Greljo
et al., 2022). Given the smaller set of phenomenological
constraints, a larger set of variations have been proposed
in the lepton sector (Greljo et al., 2022).

A somehow different approach is that of using only
U(1) groups, as originally proposed by Froggatt and
Nielsen (1979). Recent analyses of this type can be found
in (Bordone et al., 2020; Smolkovič et al., 2019).

To conclude the discussion about flavor symmetries, it
is worth mentioning that the approximate symmetries
present in the SM are responsible for a series of powerful
(approximate) selection rules in the renormalization group
evolution of the SMEFT (Feldmann et al., 2015; Machado
et al., 2023). These are nothing but the manifestations of
the statement made in Sec. III.A that the partitioning of
the EFT due to global symmetries is stable with respect
to quantum corrections. These selection rules become
manifest when working in a basis of flavor invariants,
where the apparently large anomalous dimension matrix
of dimension-six current-current operators is reduced to
a block-diagonal structure with several blocks of small
dimension (Machado et al., 2023).

Impact on flavor assumption (see discussion 
of approximate symmetries in Lecture 2)

[Isidori and Wyler, arXiv:2303.16922] 



Matching to UV models

• Top-down: quite powerful if guided by specific anomalies.
• Examples: 	(𝑔 − 2), , 𝜇 → 𝑒𝛾, flavor anomalies



A model with leptoquarks
Sharpen the relation between low energy measurements and UV theories

SM extension by a heavy colored scalar 𝑆/(leptoquark)

The tree-level matching projects on 4-fermion SMEFT operators

The one-loop matching projects on dipole operators (among others)

Which can be related to the photon dipole upon SSB

45
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Figure 11 Tree-level Feynman diagrams for the S1 model (left)
and the SMEFT (right), that are relevant to the matching
of the four-fermion operators. The UV diagram has to be
expanded in powers of 1/MS before equating it with the EFT
diagram.

[C(R)

ucelqc
]prst = ��R

pr
�L⇤
ts

, (6.6c)

where we also identify the new-physics scale ⇤ with the
mass of the S1 state: ⇤ = MS .

For convenience, we want to rewrite our result in the
Warsaw basis. The operators in Eq. (6.5) are related to
the operators Q(1,3)

lq
, Qeu, and Q(1,3)

lequ
of the Warsaw basis

through the Fierz transformations (2.20). The matching
conditions in the Warsaw basis read
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where evanescent operators can be ignored since we work
at tree level. In the present case there are no integration
by parts relations or field redefinitions required to reduce
the matching result to the Warsaw basis.

Next, we want to perform the one-loop matching. Since
the entire computations is rather lengthy and the full
results are shown in (Gherardi et al., 2020), we focus here
only on the contributions to the leptonic dipole operators

[QeB ]pr = (`p�
µ⌫er)HBµ⌫ , (6.8)

[QeW ]pr = (`p�
µ⌫er)⌧

IHW I

µ⌫
, (6.9)

which can only be generated at loop level. We choose
to use on-shell matching, which allows us to single out
the dipole matching contributions, for which the relevant
diagrams are shown in Fig. 12. The first four rows display
the diagrams of the UV theory, whereas the diagram in
the last row is the only EFT diagram. Recall that, since
we employ the method of regions, we only have to consider
EFT tree diagrams with one-loop coefficients, but no loop
diagrams. After expanding in the hard loop-momentum
region and performing the Dirac algebra, including the
application of the spinor equations of motions and the
Gordon identity, the diagrams in the third and fourth
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Figure 12 One-loop diagrams relevant to the on-shell matching
of the leptonic dipole operators for the S1 model. The first four
rows show the diagrams of the UV theory, whereas the last
row contains the only EFT diagram when using the method
of regions.

row provide a local contribution to the leptonic dipole
operators. If we had chosen off-shell matching instead,
we had to consider further topologies that do not directly
match onto the dipole, but do contribute to it only after
applying field redefinitions to reduce the Green’s basis to
the Warsaw basis. However, it is not straight forward to
identify which topologies to consider, which is why we
choose to work out this explicit contribution on-shell.34

Computing and equating the amplitudes corresponding
to the diagrams shown in Fig. 12, where for the UV
amplitudes we only keep the terms with the Lorentz
structure matching that of the dipole, since the remaining
terms will match onto other operators of the Warsaw basis
that we are not interested in, we find at O(M�2

S
)

[CeB ]pr =
1

16⇡2

g1
8

(
� [Ye]pt�

R⇤
st

�R

sr
(6.10)

34 In the case of off-shell matching we could also neglect the diagrams
in the third and fourth row of Fig. 12, since we only have to
consider 1LPI diagrams. Their contribution would be shifted to
the additional operators in the Green’s basis that reduce to the
dipole by applying field redefinitions, such that the final results
of both methods agree.
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choose to work out this explicit contribution on-shell.34

Computing and equating the amplitudes corresponding
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34 In the case of off-shell matching we could also neglect the diagrams
in the third and fourth row of Fig. 12, since we only have to
consider 1LPI diagrams. Their contribution would be shifted to
the additional operators in the Green’s basis that reduce to the
dipole by applying field redefinitions, such that the final results
of both methods agree.
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C. Renormalization group evolution

The Wilson coefficients of the SMEFT Lagrangian ob-
tained from the matching are related to the UV parame-
ters at the matching scale µm, usually taken at the mass
threshold µm ⇠ M . Next, we have to evolve the coeffi-
cients down to the electroweak scale (⇠mW ) using the
SMEFT RG equations. These have been computed at
one loop for the dimension-six operators of the Warsaw
basis shown in Tab. II in (Alonso et al., 2014b; Jenkins
et al., 2013b, 2014). The RG equations of the baryon-
and lepton-number violating operators listed in Tab. IV
have been derived in (Alonso et al., 2014a) also including
operators with right-handed neutrinos. The RG equa-
tions for the dimension-five and -seven operators have
been derived in (Babu et al., 1993; Davidson et al., 2018;
Liao and Ma, 2016, 2019), whereas for dimension eight
only partial results are yet available (Chala et al., 2021;
Das Bakshi et al., 2022). Results for specific sectors of
the two-loop anomalous dimension matrix have been de-
rived in (Aebischer et al., 2022; Bern et al., 2020). For
some recent phenomenological analyses of the SMEFT
RG mixing effects see, e.g., (Aoude et al., 2022b; Chala
and Titov, 2021; Isidori et al., 2022; Kumar, 2022). A care-
ful analysis of the flavor structure of the 2499-by-2499
anomalous-dimension matrix of the SMEFT is presented
in (Machado et al., 2023).

An important feature of the RG evolution is the mixing
of different operator classes. In particular, an operator
that is not generated by the matching can obtain a non-
vanishing coefficient through the running. This leads to
non-trivial relations among different operator types, that
need to be carefully considered in a phenomenological
analysis.

As an example, we consider the RG evolution of the
leptonic dipole operators in Eq. (6.8) and (6.9), and the
Yukawa interactions, that are described by

µ
d

dµ
[CX ]pr =

1

16⇡2
[�X ]pr (6.25)

with the beta-functions given by

[�eB ]pr = 3|yt|2[CeB ]pr � 10g1y
⇤
t
[C(3)

lequ
]pr33 , (6.26a)

[�eW ]pr = 3|yt|2[CeW ]pr + 6g2y
⇤
t
[C(3)

lequ
]pr33 , (6.26b)

[�Ye
]pr = 3�

v2

⇤2

⇣
[CeH ]pr � y⇤

t
[C(1)

lequ
]pr33

⌘
⇡ 0 , (6.26c)

[�eH ]pr = 9|yt|2[CeH ]pr + 12y⇤
t
|yt|2[C(1)

lequ
]pr33 , (6.26d)

where for simplicity we only keep numerically relevant
terms, i.e., top Yukawa (yt) enhanced terms that are
not multiplied by �. Thus, we can write the Wilson
coefficients at a low scale µl, in terms of the coefficients

at the matching scale µm with one-loop accuracy as

[CX ]pr(µl) = [CX ]pr(µm) +
1

16⇡2
log

✓
µl

µm

◆
[�X ]pr .

(6.27)

The RG evolution of the Warsaw basis operators is
also automated in computer programs such as DSixTools
(Celis et al., 2017; Fuentes-Martin et al., 2021b) and
Wilson (Aebischer et al., 2018), making a phenomeno-
logical analysis using the full 2499-by-2499 anomalous-
dimension matrix of the d = 6 SMEFT feasible.

D. Low-energy constraints in the LEFT

Having discussed the matching of the BSM model de-
fined in Eq. (6.3) onto the dipole operators QeB and QeW ,
we now relate these to the photon dipole operator

[Qe� ]pr =
vp
2
eL
p
�µ⌫eR

r
Fµ⌫ . (6.28)

This allows us to illustrate how the low-energy constraints
on this effective operators can be used for constraining
the high-energy couplings of the S1 field.

To this end, we write the SMEFT Lagrangian in the
broken phase38

�Lbroken =� [Ye]pr
vp
2
(ēL

p
eR
r
)� [Yhe]pr

hp
2
(ēL

p
eR
r
)

+
[Ce� ]pr
⇤2

vp
2
(ēL

p
�µ⌫eR

r
)Fµ⌫ (6.29)

+
[CeZ ]pr
⇤2

vp
2
(ēL

p
�µ⌫eR

r
)Zµ⌫ + . . .

Here, we also included the mass term, the Yukawa, and
the Z-boson dipole, where the latter two are phenomeno-
logically not relevant for the present analysis.

Assuming that new physics is not affecting the elec-
troweak symmetry breaking pattern, i.e. assuming the
relations between quantities in the broken and unbroken
phase are the same as in the SM (e.g. g

1
= g1, s✓ = s✓,

vT = v . . . ), we can use the results presented in Sec. V
to relate the coefficients of the broken phase Lagrangian
to the ones of the unbroken phase by

 
[Ce� ]pr
[CeZ ]pr

!
=

 
c✓ �s✓

�s✓ �c✓

! 
[CeB ]pr

[CeW ]pr

!
, (6.30)

38 Notice that for convenience we use here a different definition for
the Yukawa and mass matrices compared to Eq. (5.10) . Moreover,
for the dipole operators we directly apply the SMEFT instead of
the LEFT power counting.

From Isidori and Wyler
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⇤2 [CeH ]pr
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where

c✓ =
g2p

g2
1
+ g2

2

=
e

g1
, s✓ =

g1p
g2
1
+ g2

2

=
e

g2
. (6.32)

We can now combine our results for the relations to
the broken phase, shown in Eqs. (6.30) and (6.31), with
the RG evolution equations above the electroweak scale
in Eqs. (6.26) and (6.27) to express the electromagnetic
dipole and the mass Yukawa at the electroweak scale µw

in terms of the SMEFT Wilson coefficients at the new-
physics/matching scale µm⇠⇤:

[Ce� ]pr(µw) =
⇣
1� 3L̂y2

t

⌘
[Ce� ]pr(µm)

+ 16L̂yte [C
(3)

lequ
]pr33(µm) ,

(6.33)

[Ye]pr(µw) = [Ye]pr (µm)� v2

2⇤2
[CeH ]pr(µm) (6.34)

+ 6
v2

⇤2
L̂


y3
t
[C(1)

lequ
]pr33 +

3

4
y2
t
[CeH ]pr

�

µm

,

where we assume the Yukawa couplings to be real, and
we define L̂ ⌘ (1/16⇡2) log(µm/µw). We find that the
semileptonic triplet operator Q(3)

lequ
can generate the elec-

tromagnetic dipole Qe� at the low scale, whereas the
semileptonic singlet operator Q(1)

lequ
as well as QeH run

into the mass terms Ye.
We can now investigate the RG evolution below the

electroweak scale, which is given by (Jenkins et al., 2018a)

µ
d

dµ
[Ce� ]pr =

1

16⇡2

170

9
e2[Ce� ]pr , (6.35)

µ
d

dµ
[Ye]pr = � 1

16⇡2
6e2[Ye]pr , (6.36)

where we consider all other operators to be turned off,39
and thus we only have the self renormalization of the
dipole and the mass term, which leave the flavor structure
unchanged. Notice also that the LEFT dipole operator in
Eq. (6.28) is a dimension-five operator, thus, in principle,
we had to consider double insertions of this operator for
the RG evolution. However, from the matching condi-
tions (6.10) and (6.11) we know that such contribution is
of order O(M�4

S
) in the SMEFT power counting and can

thus be neglected. Equation (6.35) then allows to evolve
the photon dipole to the low-energy scales of experimental
measurements, which for muons is µl ⇠ mµ. Notice that

39 For the SMEFT, the only numerically relevant contributions in the
running are due to the yt enhanced terms. In the LEFT, however,
the top quark is integrated out and top loops cannot contribute,
thus no such RG effects are present below the electroweak scale.

in the present case it is not required to integrate out any
other particles, such as the b quark, since these do not
affect the RG evolution in good approximation due to
their small Yukawa couplings.

Experimental measurements (usually) constrain cou-
plings in the mass basis, whereas our Wilson coefficients
are given in the generic flavor basis of the UV theory.
Thus, rotating the fermion fields to the mass basis is the
last missing piece of our analysis. To do this, we need to
diagonalize the mass matrix [Ye]pr which is determined
in terms of the SMEFT operators in Eq. (6.31). Assume
the mass term is diagonalized (diag. = UL Ye U

†
R
) when

rotating the lepton fields by

e0
L
= UL eL , e0

R
= UR eR , (6.37)

where UL,R are unitary matrices and e0
L,R

denote the mass-
basis fields. Then the mass-basis dipole C0

e�
is given by

C0
e�

= UL Ce� U†
R
. (6.38)

The most sensitive probe of this operator is the lep-
ton flavor violating transition µ ! e�; however, also the
anomalous magnetic moment of the muon (g � 2)µ is in-
teresting, especially given the tension of the recent FNAL
measurement (Abi et al., 2021) with the SM prediction by
Aoyama et al. (2020), summarized in Eq. (1.9). For mere
illustrative purposes, we take the latter result as reference
input of our analysis, despite the recent doubts on its
validity mentioned in Sec. I.B.1. Taking into account also
the upper bound on the branching ratio B(µ+ ! e+�)
determined by the MEG experiment (Baldini et al., 2016),
we can then write

B(µ+ ! e+�) =
m3

µ
v2

8⇡�µ

��[C0
e�
]12
��2 +

��[C0
e�
]21
��2

⇤4

< 4.2⇥ 10�13 (90% CL) ,
(6.39)
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= (251± 59)⇥ 10�11 , (6.40)

which leads to
����
[C0

e�
]12(21)
⇤2

���� . 2.1⇥ 10�10 TeV�2 , (6.41)

Re[C0
e�
]22

⇤2
' �1.0⇥ 10�5 TeV�2 . (6.42)

We can now combine all our results: the low-energy
constraints in Eqs. (6.41)–(6.42), the rotation to the
mass basis (6.38), the LEFT RG equations (6.35)–(6.36),
the EWSB relations (6.30)–(6.31), the SMEFT run-
ning (6.26), and the matching conditions (6.10)–(6.11),
where the last three results have already been combined
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ton flavor violating transition µ ! e�; however, also the
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teresting, especially given the tension of the recent FNAL
measurement (Abi et al., 2021) with the SM prediction by
Aoyama et al. (2020), summarized in Eq. (1.9). For mere
illustrative purposes, we take the latter result as reference
input of our analysis, despite the recent doubts on its
validity mentioned in Sec. I.B.1. Taking into account also
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We can now combine all our results: the low-energy
constraints in Eqs. (6.41)–(6.42), the rotation to the
mass basis (6.38), the LEFT RG equations (6.35)–(6.36),
the EWSB relations (6.30)–(6.31), the SMEFT run-
ning (6.26), and the matching conditions (6.10)–(6.11),
where the last three results have already been combined
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in Eq. (6.33) and (6.34).40
For simplicity we also consider [CeH ]pr = 0, which holds

at tree level in the considered S1 model. We also assume
Ye to be diagonal such that the mass matrix is already
diagonal and we can set UL,R = 1. Notice that this is
a strong assumption on a marginal operator appearing
in the UV, and in general we have to consider rotation
matrices UL,R 6= 1. The resulting constraints on the
S1 couplings, assuming these are real quantities, are shown
in Fig. 13, where we set the leptoquark mass to MS =
2TeV. In the upper plot, the constraints derived from
the �aµ measurement are shown, whereas the lower plot
shows the constraints from the µ ! e� decay, where we
set �R

31
= 0 for simplicity. Also couplings to quarks other

than the top are neglected as these are not yt enhanced.
As can be seen, the scales of the two figures are very

different, signaling that underlying models able to explain
the (g�2)µ anomaly, while being consistent with µ ! e�,
require a peculiar flavor-alignment mechanism. A more
detailed phenomenological analysis of the given model
and a discussion of the implied flavor structure can be
found in (Isidori et al., 2022), see also (Aebischer et al.,
2021b).

There are also tools automating large parts of such
analysis. For example the flavio (Straub, 2018) package
has a large set of low-energy measurements implemented
that can be used to constrain Wilson coefficients. Also the
SMEFT to LEFT matching as well as the RG evolution
in both ETFs is available in the code [trough the Wilson

package (Aebischer et al., 2018); see also DsixTools (Celis
et al., 2017)]. A global likelihood based on the data
available in flavio can be constructed with the smelli

package (Aebischer et al., 2019b), which can simplify
analyses.

E. SMEFT at high-pT and global fits

While the SMEFT (in combination with the LEFT) is
very practical to relate low-energy measurements to UV
parameters, it can also be used to analyze measurements
from higher energies in a model independent way. This
makes it a powerful tool for combined analyses of multiple
data sets from various types of processes at different
energy scales. This is in particular advantageous in light
of the plethora of measurements of different processes
performed at LHC and LEP. We can use the SMEFT
for phenomenological analyses of all these observables in
Higgs (Corbett et al., 2013, 2015b; Ellis et al., 2014), Di-
boson (Biekoetter et al., 2019; Butter et al., 2016; Gomez-
Ambrosio, 2019; Grojean et al., 2019), and top physics

40 Notice that we have chosen ⇠rp = 1 for convenience, which fixes
the NDR reading point that has to be used in all consecutive
EFT calculations.
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Figure 13 Constraints on the S1 leptoquark couplings derived
from the measurements of the µ ! e� transition (upper plot),
and from the (g � 2)µ measurement (lower plot). The lepto-
quark mass is chosen as MS = 2TeV, and only top-Yukawa
enhanced contributions are considered in the numerical analy-
sis. See text for more details.

(Aoude et al., 2022a,b; Brivio et al., 2020; Hartland et al.,
2019), as well as for electroweak precision studies (Almeida
et al., 2022; Bresó-Pla et al., 2021; Efrati et al., 2015;
Falkowski and Riva, 2015; Falkowski and Straub, 2020;
Han and Skiba, 2005), and Drell-Yan tails (Allwicher et al.,
2023a; Greljo et al., 2023). Global fits considering multiple
of the above data sets have been performed, e.g., in (Ellis
et al., 2021, 2018; Ethier et al., 2021; da Silva Almeida
et al., 2019), see also (Dawson et al., 2020). Such combined
analyses of different types of data are necessary since
in any reasonable new-physics model multiple SMEFT
operators are generated when integrating out the heavy
particles (Jiang and Trott, 2017). These operators can
contribute to different processes that can be probed at
various energies. Also RG mixing can generate further
operators contributing to even more processes. Therefore,
to carefully evaluate the plausibility of a given BSM theory,

From RGE evolution in the SMEFT : 	𝝁𝒎→ 𝝁𝑾 

From RGE in the LEFT: 𝝁𝑾 → 𝒎𝝁 

Back to the couplings 
of the UV model 

Most sensitive probes: 𝝁 → 𝒆𝜸 and (𝒈 − 𝟐)𝝁 

Notice: hidden in the RGE of 𝐶"# is a strong 
dependence on the top Yukawa coupling 𝑦$

𝑀%! = 2 TeV 
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Figure 14 Bounds on SMEFT effective coefficients as obtained by Ellis et al. (2021). The top panel indicates the bounds on
the coefficients assuming a reference effective scale of 1 TeV. The corresponding bounds on the effective scales, for different
reference hypotheses for the Wilson coefficients, are shown in the bottom panel. The light yellow points are obtained in the
U(3)

5 symmetric limit. The remaining points are obtained employing the U(2)
3 ⇥ U(2)u ⇥ U(2)q flavor symmetry, which allow

us to treat separately top-physics observables.
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We now integrate out the U1 at tree-level using its equa-
tion of motion Uµ = �J†

µ
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), we find

LEFT = LSM � 1

M2

U

J†
µ
Jµ . (6.45)

Then, using the Fierz identities in Eqs. (2.20) and (2.21)

we find the EFT Lagrangian in the Warsaw basis
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(6.46)

Notice that since we restrict our analysis to the tree level,
we do not have to consider evanescent contributions here.

This Lagrangian provides the appropriate description
for interactions at energies above the electroweak scale
but below MU . Thus, we can use it to describe the
tails of Drell-Yan distributions where we consider events
with 200GeV . m`` . MU . For a discussion of the EFT
validity in the case where the EFT cutoff scale MU is not
sufficiently high, see the end of this section and (Allwicher
et al., 2023a).

The event yield N in a given bin of the measured
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Notice that since we restrict our analysis to the tree level,
we do not have to consider evanescent contributions here.

This Lagrangian provides the appropriate description
for interactions at energies above the electroweak scale
but below MU . Thus, we can use it to describe the
tails of Drell-Yan distributions where we consider events
with 200GeV . m`` . MU . For a discussion of the EFT
validity in the case where the EFT cutoff scale MU is not
sufficiently high, see the end of this section and (Allwicher
et al., 2023a).

The event yield N in a given bin of the measured
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Notice that since we restrict our analysis to the tree level,
we do not have to consider evanescent contributions here.

This Lagrangian provides the appropriate description
for interactions at energies above the electroweak scale
but below MU . Thus, we can use it to describe the
tails of Drell-Yan distributions where we consider events
with 200GeV . m`` . MU . For a discussion of the EFT
validity in the case where the EFT cutoff scale MU is not
sufficiently high, see the end of this section and (Allwicher
et al., 2023a).

The event yield N in a given bin of the measured

affects Drell-Yan production: 𝑝𝑝 → ℓ3ℓ4
In particular tail of 𝑚ℓℓ distribution (LHC)

These same operators contribute also to low-energy processes, such as 𝑏 → 𝑐ℓ𝜈 decays entering the 𝑅6 , 𝑅6∗  ratios

5

B. Motivations and hints for new physics

Despite the outstanding agreement of the SM with
experimental data, there are well known deficiencies that
hint at a more fundamental theory. The most important
is arguably the lack to incorporate gravity, the fourth
known fundamental force of nature, into a coherent QFT
framework valid at arbitrary energy scales. As anticipated,
the SM does not provide an explanation for cosmological
observations such as the baryon asymmetry, dark matter,
and dark energy. These phenomena do not necessarily
need to find an explanation in the domain of particle
physics. However, no convincing alternative explanations
have been provided yet and, if interpreted in a QFT
framework, they unavoidably point to the existence of
new degrees of freedom beyond the SM ones.

The clear experimental evidence of non-vanishing neu-
trino masses is also an unambiguous indication that the
SM Lagrangian in (1.3) is not complete. As we shall
discuss in Sec. II.A, a natural solution to this problem
is obtained when interpreting (1.3) as the first part –
more precisely, the leading part containing operators of
dimension up to four– of a more general EFT Lagrangian.
A serious consistency problem of the SM is also the insta-
bility of the Higgs quadratic term in (1.6) with respect to
quantum corrections, the so-called electroweak hierarchy
problem (Barbieri, 2019). While none of the problems
mentioned above points to a well-defined energy scale for
the breakdown of the SM, a solution of the electroweak
hierarchy problem would necessarily require new physics
not far from the Fermi scale (v ⇡ 246 GeV). More pre-
cisely, we should expect some new degrees of freedom in
the few-TeV energy domain able to screen the quadratic
sensitivity of the mass term in (1.6) to possible higher
scales in the theory. The fact that no clear evidence of
new physics has been found yet at the LHC has led to
consider explanations of this problem beyond the EFT
framework (Giudice, 2019). However, it is worth stressing
that the few-TeV energy domain is still largely unexplored
and many solutions within the EFT domain are still pos-
sible. This motivates a deeper study of the SM as the
low-energy limit of a more complete theory with new de-
grees of freedom not far from the Fermi scale and thus
potentially detectable in near-future experiments.

Beside these general considerations, there are a few
specific hints of deviations from the SM predictions ob-
served in precision measurements. None of these hints is
statistically compelling yet. However, they provide a clear
illustration of the type of deviations we can expect in the
near future, and of the type of effects we can describe
within the EFT approach to new physics. This is why
we discuss two such hints in more detail below: we will
use these results in Sec. VI to illustrate, in practice, the
power of the EFT approach.

1. Muon anomalous magnetic moment

A long-standing discrepancy between SM predictions
and observations concerns the anomalous magnetic mo-
ment of the muon. The magnetic moment of the muon, µµ,
is defined as

µµ = gµ

✓
e

2mµ

◆
s , (1.8)

where s denotes the muon spin and gµ is the so-called g-
factor. The prediction from the Dirac equations is gµ = 2;
however, in QFT this value is modified by quantum ef-
fects sensitive to heavy degrees of freedom. The interest-
ing quantum effects are parametrized by the anomalous
magnetic moment, aµ = 1

2
(gµ � 2). According to the

detailed analysis by Aoyama et al. (2020), the current SM
prediction is aSM

µ
= 116591810(43)⇥ 10�11. The E989

experiment at FNAL (Abi et al., 2021) recently measured
a deviation from this value that, combined with the pre-
vious BNL E821 experiment (Bennett et al., 2006), yields
a 4.2� discrepancy:

�aµ = aExp

µ
� aSM

µ
= (251± 59)⇥ 10�11 . (1.9)

The chance of a statistical fluctuation of this size is below
0.003% making this an interesting hint of possible BSM
dynamics. We will discuss the possible interpretation of
this effect in terms of the SM effective field theory in
Sec. VI.D. However, we warn the reader that there is
an intense debate on the reliability of the error in the
SM prediction entering (1.9). The main uncertainty is
due to hadronic contributions to the photon vacuum-
polarization amplitude. The latter is computed either via
�(e+e� ! hadron) data and dispersion relations, or via
lattice QCD. Recent results from lattice QCD (Borsanyi
et al., 2021) [see also (Alexandrou et al., 2023; Cè et al.,
2022; Davies et al., 2022)] hint at a possibly smaller devi-
ation from the SM than what was obtained in (Aoyama
et al., 2020) using dispersive techniques, see also (Colan-
gelo et al., 2022). More recently, a new measurements
of �(e+e� ! hadron), presented in (Ignatov et al., 2023),
also shows some discrepancies with previous experimental
inputs used in the dispersive approach.

2. Lepton universality violation

Deviations from the SM predictions have recently been
reported in tests of lepton flavor universality in semilep-
tonic B-meson decays. These tests are performed via
universality ratios, such as

RD(⇤) =
B
�
B ! D(⇤)⌧⌫⌧

�

B
�
B ! D(⇤)`⌫`

� , (1.10)
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m`` distribution can then be schematically written as

N = Lint (A⇥ ✏)

Z
m

2
``,max

m
2
``,min

ds
d�

ds
, (6.47)

where Lint is the integrated luminosity and (A ⇥ ✏)
parametrizes the acceptance and efficiency of the detector
and has to be extracted using Monte Carlo simulations.
The cross section � is computed as a function of the Wil-
son coefficients or new-physics couplings, thus allowing
to constrain these. For more details see (Allwicher et al.,
2023a). The event yields can also be automatically ex-
tracted using codes like HighPT (Allwicher et al., 2023b)
or flavio (Greljo et al., 2023).

The operators in Eq. (6.46) contribute also to low-
energy processes, of course. In particular, [Q(3)

lq
]3323 and

[Qledq]3332 can contribute to the b ! c⌧⌫ transitions that
we are interested in. The relevant low-energy Lagrangian
can be written as

Lb!c = �4GFp
2

V23

h
(1 + Cc

LL
) (cL�

µbL)(⌧L�µ⌫L)

� 2 Cc

LR
(cLbR)(⌧R⌫L)

i (6.48)

where GF is Fermi’s constant and V23 = Vcb is a CKM
matrix element. The coefficients are related to the Warsaw
basis Wilson coefficients by

Cc

LL
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M2
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3X
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, (6.49)
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]333kV2k

V23

, (6.50)

where we assume that the flavor basis of the new physics
is given by the down-quark and charged-lepton mass basis
so that we can write

qp =

✓
V ⇤
rp
uL

r

dL
p

◆
, up = uR

p
, dp = dR

p
, `p =

✓
⌫L
p

eL
p

◆
, ep = eR

p
.

(6.51)

Following (Cornella et al., 2021), we can express the
LFU ratios RD(⇤) in terms of these parameters as
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LL
|2� 3.0Re
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(6.52)
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(6.53)

As numerical input we use the world average for the
experimental measurements and SM predictions for these
observables as provided by the HFLAV collaboration in

(Amhis et al., 2023a,b), respectively:

RD = 0.356± 0.029 , RSM

D
= 0.298(4) , (6.54)

RD⇤ = 0.284± 0.013 , RSM

D⇤ = 0.254(5) . (6.55)

The LEFT beta-functions of the coefficients are given
by (Jenkins et al., 2018a)

�Cc

LL
= �4e2Cc

LL
, �Cc

LR
=

✓
4

3
e2 � 8g2

3

◆
Cc

LR
. (6.56)

We use the LEFT RG equations42 to directly run the low-
energy coefficients from the scale µ ⇠ mb up to µ = 1TeV,
which is the appropriate scale for measurements of the
high-pT Drell-Yan tails at LHC. There we directly match
to the SMEFT and neglect the SMEFT running in good
approximation since it only yields a small logarithmic
contribution.

To perform the combined fit of the high-pT Drell-Yan
data and the low-energy measurements of RD(⇤) , we as-
sume that all couplings except for �L/R

33
and �L

23
vanish,

i.e., the U1 couples dominantly to the third generation.
Furthermore, we choose to set �L

33
= ��R

33
= 1 and

�L

23
= 2Vts, adopting the hypothesis of a minimal break-

ing of the flavor symmetry (Aebischer et al., 2023b). The
combined constraints on the U1 model in the coupling
versus mass plane are shown in Fig. 16. We used the
HighPT package (Allwicher et al., 2023b) to derive the
constraints from the Drell-Yan search for new physics in
pp ! ⌧⌧ scattering by the ATLAS collaboration (Aad
et al., 2020). The 95% CL region preferred by our low-
energy constraint discussed above is shown in light orange,
whereas the region excluded at 95% by LHC is shown in
dark gray. In combination, only a fraction of parameter
space is left viable, thus showing the complementarity of
the low- and high-energy constraints.43 For more details
on this analysis see (Aebischer et al., 2023b; Cornella
et al., 2021).

In the case of very low masses of the leptoquark
(MU ⇠ 1TeV) one might question the validity of the
EFT approach to Drell-Yan measurements, since the kine-
matical distributions contain events with corresponding
center-of-mass energies

p
s of the same order. Therefore

the EFT expansion in s/M2

U
can converge poorly or even

break down. To improve the convergence one can include
higher-dimensional operators. We can either fit them

42 The dominant contribution is due to the strong coupling con-
stant ↵s = g

2

3
/4⇡, which runs as ↵s(µ) =

4⇡

�0 ln(µ2/⇤2
QCD)

at one

loop, with the one-loop QCD beta-function �0.
43 Interestingly enough, CMS data currently indicates a 3� excess of

events in pp ! ⌧ ⌧̄ , well compatible with a possible U1 contribution
in this parameter region (CMS Collaboration, 2022).

[HFLAV]
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where Lint is the integrated luminosity and (A ⇥ ✏)
parametrizes the acceptance and efficiency of the detector
and has to be extracted using Monte Carlo simulations.
The cross section � is computed as a function of the Wil-
son coefficients or new-physics couplings, thus allowing
to constrain these. For more details see (Allwicher et al.,
2023a). The event yields can also be automatically ex-
tracted using codes like HighPT (Allwicher et al., 2023b)
or flavio (Greljo et al., 2023).
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where GF is Fermi’s constant and V23 = Vcb is a CKM
matrix element. The coefficients are related to the Warsaw
basis Wilson coefficients by

Cc

LL
= � 1p

2GF

1

M2

U

3X

k=1

[C(3)

lq
]33k3V2k

V23

, (6.49)

Cc

LR
=

1

4
p
2GF

1

M2

U

3X

k=1

[C⇤
ledq

]333kV2k

V23

, (6.50)

where we assume that the flavor basis of the new physics
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Following (Cornella et al., 2021), we can express the
LFU ratios RD(⇤) in terms of these parameters as
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As numerical input we use the world average for the
experimental measurements and SM predictions for these
observables as provided by the HFLAV collaboration in

(Amhis et al., 2023a,b), respectively:

RD = 0.356± 0.029 , RSM

D
= 0.298(4) , (6.54)

RD⇤ = 0.284± 0.013 , RSM
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The LEFT beta-functions of the coefficients are given
by (Jenkins et al., 2018a)
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We use the LEFT RG equations42 to directly run the low-
energy coefficients from the scale µ ⇠ mb up to µ = 1TeV,
which is the appropriate scale for measurements of the
high-pT Drell-Yan tails at LHC. There we directly match
to the SMEFT and neglect the SMEFT running in good
approximation since it only yields a small logarithmic
contribution.

To perform the combined fit of the high-pT Drell-Yan
data and the low-energy measurements of RD(⇤) , we as-
sume that all couplings except for �L/R
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vanish,

i.e., the U1 couples dominantly to the third generation.
Furthermore, we choose to set �L

33
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= 1 and
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= 2Vts, adopting the hypothesis of a minimal break-

ing of the flavor symmetry (Aebischer et al., 2023b). The
combined constraints on the U1 model in the coupling
versus mass plane are shown in Fig. 16. We used the
HighPT package (Allwicher et al., 2023b) to derive the
constraints from the Drell-Yan search for new physics in
pp ! ⌧⌧ scattering by the ATLAS collaboration (Aad
et al., 2020). The 95% CL region preferred by our low-
energy constraint discussed above is shown in light orange,
whereas the region excluded at 95% by LHC is shown in
dark gray. In combination, only a fraction of parameter
space is left viable, thus showing the complementarity of
the low- and high-energy constraints.43 For more details
on this analysis see (Aebischer et al., 2023b; Cornella
et al., 2021).

In the case of very low masses of the leptoquark
(MU ⇠ 1TeV) one might question the validity of the
EFT approach to Drell-Yan measurements, since the kine-
matical distributions contain events with corresponding
center-of-mass energies

p
s of the same order. Therefore

the EFT expansion in s/M2
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break down. To improve the convergence one can include
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events in pp ! ⌧ ⌧̄ , well compatible with a possible U1 contribution
in this parameter region (CMS Collaboration, 2022).
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where Lint is the integrated luminosity and (A ⇥ ✏)
parametrizes the acceptance and efficiency of the detector
and has to be extracted using Monte Carlo simulations.
The cross section � is computed as a function of the Wil-
son coefficients or new-physics couplings, thus allowing
to constrain these. For more details see (Allwicher et al.,
2023a). The event yields can also be automatically ex-
tracted using codes like HighPT (Allwicher et al., 2023b)
or flavio (Greljo et al., 2023).

The operators in Eq. (6.46) contribute also to low-
energy processes, of course. In particular, [Q(3)

lq
]3323 and

[Qledq]3332 can contribute to the b ! c⌧⌫ transitions that
we are interested in. The relevant low-energy Lagrangian
can be written as

Lb!c = �4GFp
2

V23

h
(1 + Cc

LL
) (cL�

µbL)(⌧L�µ⌫L)

� 2 Cc

LR
(cLbR)(⌧R⌫L)

i (6.48)

where GF is Fermi’s constant and V23 = Vcb is a CKM
matrix element. The coefficients are related to the Warsaw
basis Wilson coefficients by

Cc

LL
= � 1p

2GF

1

M2

U

3X

k=1

[C(3)

lq
]33k3V2k

V23

, (6.49)

Cc

LR
=

1

4
p
2GF

1

M2

U

3X

k=1

[C⇤
ledq

]333kV2k

V23

, (6.50)

where we assume that the flavor basis of the new physics
is given by the down-quark and charged-lepton mass basis
so that we can write

qp =

✓
V ⇤
rp
uL

r

dL
p

◆
, up = uR

p
, dp = dR

p
, `p =

✓
⌫L
p

eL
p

◆
, ep = eR

p
.

(6.51)

Following (Cornella et al., 2021), we can express the
LFU ratios RD(⇤) in terms of these parameters as

RD

RSM

D

= |1+ Cc

LL
|2� 3.0Re

⇥
(1+ Cc

LL
) Cc⇤

LR

⇤
+ 4.12 |Cc

LR
|2,

(6.52)
RD⇤

RSM

D⇤
= |1+ Cc

LL
|2� 0.24Re

⇥
(1+ Cc

LL
) Cc⇤

LR

⇤
+ 0.16 |Cc

LR
|2.

(6.53)

As numerical input we use the world average for the
experimental measurements and SM predictions for these
observables as provided by the HFLAV collaboration in

(Amhis et al., 2023a,b), respectively:

RD = 0.356± 0.029 , RSM

D
= 0.298(4) , (6.54)

RD⇤ = 0.284± 0.013 , RSM

D⇤ = 0.254(5) . (6.55)

The LEFT beta-functions of the coefficients are given
by (Jenkins et al., 2018a)

�Cc

LL
= �4e2Cc

LL
, �Cc

LR
=

✓
4

3
e2 � 8g2

3

◆
Cc

LR
. (6.56)

We use the LEFT RG equations42 to directly run the low-
energy coefficients from the scale µ ⇠ mb up to µ = 1TeV,
which is the appropriate scale for measurements of the
high-pT Drell-Yan tails at LHC. There we directly match
to the SMEFT and neglect the SMEFT running in good
approximation since it only yields a small logarithmic
contribution.

To perform the combined fit of the high-pT Drell-Yan
data and the low-energy measurements of RD(⇤) , we as-
sume that all couplings except for �L/R

33
and �L

23
vanish,

i.e., the U1 couples dominantly to the third generation.
Furthermore, we choose to set �L

33
= ��R

33
= 1 and

�L

23
= 2Vts, adopting the hypothesis of a minimal break-

ing of the flavor symmetry (Aebischer et al., 2023b). The
combined constraints on the U1 model in the coupling
versus mass plane are shown in Fig. 16. We used the
HighPT package (Allwicher et al., 2023b) to derive the
constraints from the Drell-Yan search for new physics in
pp ! ⌧⌧ scattering by the ATLAS collaboration (Aad
et al., 2020). The 95% CL region preferred by our low-
energy constraint discussed above is shown in light orange,
whereas the region excluded at 95% by LHC is shown in
dark gray. In combination, only a fraction of parameter
space is left viable, thus showing the complementarity of
the low- and high-energy constraints.43 For more details
on this analysis see (Aebischer et al., 2023b; Cornella
et al., 2021).

In the case of very low masses of the leptoquark
(MU ⇠ 1TeV) one might question the validity of the
EFT approach to Drell-Yan measurements, since the kine-
matical distributions contain events with corresponding
center-of-mass energies

p
s of the same order. Therefore

the EFT expansion in s/M2

U
can converge poorly or even

break down. To improve the convergence one can include
higher-dimensional operators. We can either fit them

42 The dominant contribution is due to the strong coupling con-
stant ↵s = g

2

3
/4⇡, which runs as ↵s(µ) =

4⇡

�0 ln(µ2/⇤2
QCD)

at one

loop, with the one-loop QCD beta-function �0.
43 Interestingly enough, CMS data currently indicates a 3� excess of

events in pp ! ⌧ ⌧̄ , well compatible with a possible U1 contribution
in this parameter region (CMS Collaboration, 2022).
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Figure 16 Constraints on the U1 model in the coupling gU

versus mass MU plane. Shown in light orange is the region
preferred by the low-energy fit of the R

D(⇤) anomalies, and
in dark gray we show the parameter space excluded by the
ATLAS search (Aad et al., 2020) for new physics in pp ! ⌧⌧

scatterings. Both constraints are given at 95% CL.

as additional free parameters, marginalize over them,44
or we can match them to the parameters of a given UV
model, such as the U1 leptoquark, depending on the sce-
nario we are considering. If we are too close to the mass
threshold of the heavy BSM states there might be no
way to analyze the high-energy data apart from using a
concrete UV model. However, in this case the model in-
dependence of the EFT approach might be less important
as the signal for a concrete new-physics model should
be stronger. A short discussion of the EFT validity in
Drell-Yan tails can be found in (Allwicher et al., 2023a).
For more details see also Sec. II.C.1 and (Brivio et al.,
2022).

VII. CONCLUSION

The Standard Model has set a natural and successful
framework for the qualitative and quantitative under-
standing of the elementary particles and their interac-
tions. It has been possible to calculate its predictions
with enormous precision, allowing comparison with a sim-
ilar progress on the experimental side. On the other hand,

44 Notice that when marginalizing over d = 8 operators no correla-
tion among the d = 6 and d = 8 operators is assumed, which is
not true in concrete BSM scenarios. In particular the interference
of d = 6 and d = 8 operators with the SM amplitude are allowed
to have opposite sign, leading to cancellations.

as already stated in the introduction, there is a number
of observational and theoretical issues with the SM, such
as neutrino masses, baryon asymmetry, a natural bridge
to gravity, and the instability of the Higgs quadratic term.
This is why it is widely believed, and we share this point
of view, that the SM is the remnant of a more complete
theory with new degrees of freedom showing up at some
higher energy scale. By this statement we do not im-
ply there cannot be also other light states beyond the
SM ones, but rather that the SM fields are embedded
into a more complete QFT with heavy fields in the UV,
addressing many of the currently open issues.

The outstanding agreement between experiment and
theory, that in various cases reach the sub-percent level,
suggests that the energy scale where new heavy particles
will appear, and the SM will manifestly become an incom-
plete description of nature, is well above the electroweak
scale. This fact does not prevent the observation of effects
related to the new degrees of freedom in current and near-
future experiments. However, these effects will be indirect
manifestation of new physics, and their interpretation in
terms of hypothetical new dynamics require a suitable
effective theory approach.

In this article we review the EFT approach to physics
beyond the SM, focusing in particular on the linear real-
ization of the mechanism of electroweak symmetry break-
ing, i.e., the SMEFT. Given all measurements of the
125 GeV scalar particle discovered at the LHC are consis-
tent with the properties expected for the SM Higgs boson,
the SMEFT emerges as most natural EFT approach to
physics beyond the SM. In Sec. II we extensively reviewed
the construction of the basis of effective operators, the
power counting, and various other technical aspects of
this EFT. In Sec. IV we also illustrated the more general
approach represented by the HEFT, or the possibility of
a non-linear realization of the mechanism of electroweak
symmetry breaking. An option that, despite being not
favored by current data, cannot be excluded at present.

An important role in effective field theories is played by
exact and approximate symmetries emerging in the low-
energy limit of the theory, the so-called accidental sym-
metries. We extensively reviewed this aspect in Sec. III,
focusing in particular on flavor symmetries, which repre-
sent the vast majority of possible global symmetries in
the SMEFT. As we argued, in the absence of flavor sym-
metries the SMEFT approach is not particularly useful:
severe bounds from flavor-violating observables would
imply a very high scale of new physics, rendering the
whole construction not particularly appealing. On the
other hand, with the help of motivated hypotheses about
a symmetry and symmetry-breaking, resulting from gen-
eral dynamical hypothesis in the UV, it is possible to
consistently reduce the bounds on the new-physics scales
and provide an a posteriori justification for the observed
mass hierarchies. In this theoretically motivated limit,
we can both reduce the number of free parameters of the

SMEFT to LEFT 
matching 

After running in the LEFT+SMEFT 𝝁𝒃 → 𝝁𝒎 (𝜇0~1TeV) perform 
combined fit with DY measurements of 𝑚ℓℓ distribution tail 

In combination only a fraction of the 
parameter space is viable

SMEFT enables complementarity of low- and high-energy measurements



Conclusions

§ The SM effective field theory can be a powerful tool to 
explore the TeV scale whose knowledge is crucial and still 
not complete.

§ Effects of new physics can then be constrained using the 
broad spectrum of precision measurements available 
from EW, Higgs, top, flavor physics and more.

§ The SMEFT (→LEFT) framework can be used to connect 
unknown physics at the UV scale (> 1 TeV) to the EW scale 
and below within a systematic framework that allows 
some model independence.

§ With increasing precision in both theory and experiments, 
constraints could start to show intriguing patterns and 
guide future explorations.

§ In the presence of anomalies, the SMEFT framework can 
connect them to a much broader phenomenology and offer 
a unique framework to their interpretation.
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