

Effective Field Theories Across the Universe

The Standard Model Effective Field Theory

Instituto de Fisica – UNAM
Mexico City
Sep 30-Oct 4, 2024

Laura Reina
Physics Department

Outline

Introduction to EFT in particle physics

- Main ideas.
- Main strategies.
- Some examples: from Fermi theory to the SM to the SMEFT.

Constructing the SMEFT

- The SM: brief review, strengths and weaknesses.
- Adding SMEFT interactions, how and why.

The SMEFT hands on

- SMEFT effects on SM parameters and SM interactions.
- Calculating observables in the SMEFT.

Constraining SMEFT interactions

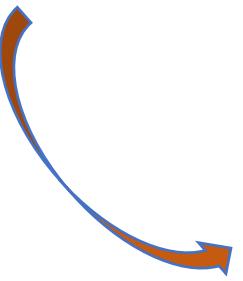
- Global fits of collider observables (EW, Higgs, top), flavor observables, low energy observables.
- Matching to UV models.

SMEFT: dim 6

Very similar considerations leads to identify a basis of dim=6 SMEFT operators.

“Warsaw” or GIMR basis: most commonly used

Grzadkowski, Iskrzynski,
Misiak, Rosiek, 1008.4884



With respect to the dim=5 case, the problem arises of identifying a minimal set of independent operators.

(59 operators excluding L- and B-violating ones and suppressing flavor indices).

Considering the flavor structure of the operators:
2499 couplings out of which 1350 are CP-even and 1149 are CP-odd.

X^3		φ^6 and $\varphi^4 D^2$		$\psi^2 \varphi^3$	
Q_G	$f^{ABC} G_\mu^{A\nu} G_\nu^{B\rho} G_\rho^{C\mu}$	Q_φ	$(\varphi^\dagger \varphi)^3$	$Q_{e\varphi}$	$(\varphi^\dagger \varphi)(\bar{l}_p e_r \varphi)$
$Q_{\tilde{G}}$	$f^{ABC} \tilde{G}_\mu^{A\nu} G_\nu^{B\rho} G_\rho^{C\mu}$	$Q_{\varphi \square}$	$(\varphi^\dagger \varphi) \square (\varphi^\dagger \varphi)$	$Q_{u\varphi}$	$(\varphi^\dagger \varphi)(\bar{q}_p u_r \tilde{\varphi})$
Q_W	$\varepsilon^{IJK} W_\mu^{I\nu} W_\nu^{J\rho} W_\rho^{K\mu}$	$Q_{\varphi D}$	$(\varphi^\dagger D^\mu \varphi)^* (\varphi^\dagger D_\mu \varphi)$	$Q_{d\varphi}$	$(\varphi^\dagger \varphi)(\bar{q}_p d_r \varphi)$
$Q_{\tilde{W}}$	$\varepsilon^{IJK} \tilde{W}_\mu^{I\nu} W_\nu^{J\rho} W_\rho^{K\mu}$				
$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$	
$Q_{\varphi G}$	$\varphi^\dagger \varphi G_{\mu\nu}^A G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W_{\mu\nu}^I$	$Q_{\varphi l}^{(1)}$	$(\varphi^\dagger i \overleftrightarrow{D}_\mu \varphi)(\bar{l}_p \gamma^\mu l_r)$
$Q_{\varphi \tilde{G}}$	$\varphi^\dagger \varphi \tilde{G}_{\mu\nu}^A G^{A\mu\nu}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$(\varphi^\dagger i \overleftrightarrow{D}_\mu^I \varphi)(\bar{l}_p \tau^I \gamma^\mu l_r)$
$Q_{\varphi W}$	$\varphi^\dagger \varphi W_{\mu\nu}^I W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \tilde{\varphi} G_{\mu\nu}^A$	$Q_{\varphi e}$	$(\varphi^\dagger i \overleftrightarrow{D}_\mu \varphi)(\bar{e}_p \gamma^\mu e_r)$
$Q_{\varphi \tilde{W}}$	$\varphi^\dagger \varphi \tilde{W}_{\mu\nu}^I W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \tilde{\varphi} W_{\mu\nu}^I$	$Q_{\varphi q}^{(1)}$	$(\varphi^\dagger i \overleftrightarrow{D}_\mu \varphi)(\bar{q}_p \gamma^\mu q_r)$
$Q_{\varphi B}$	$\varphi^\dagger \varphi B_{\mu\nu} B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tilde{\varphi} B_{\mu\nu}$	$Q_{\varphi q}^{(3)}$	$(\varphi^\dagger i \overleftrightarrow{D}_\mu^I \varphi)(\bar{q}_p \tau^I \gamma^\mu q_r)$
$Q_{\varphi \tilde{B}}$	$\varphi^\dagger \varphi \tilde{B}_{\mu\nu} B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G_{\mu\nu}^A$	$Q_{\varphi u}$	$(\varphi^\dagger i \overleftrightarrow{D}_\mu \varphi)(\bar{u}_p \gamma^\mu u_r)$
$Q_{\varphi WB}$	$\varphi^\dagger \tau^I \varphi W_{\mu\nu}^I B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W_{\mu\nu}^I$	$Q_{\varphi d}$	$(\varphi^\dagger i \overleftrightarrow{D}_\mu \varphi)(\bar{d}_p \gamma^\mu d_r)$
$Q_{\varphi \tilde{W}B}$	$\varphi^\dagger \tau^I \varphi \tilde{W}_{\mu\nu}^I B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\tilde{\varphi}^\dagger D_\mu \varphi)(\bar{u}_p \gamma^\mu d_r)$

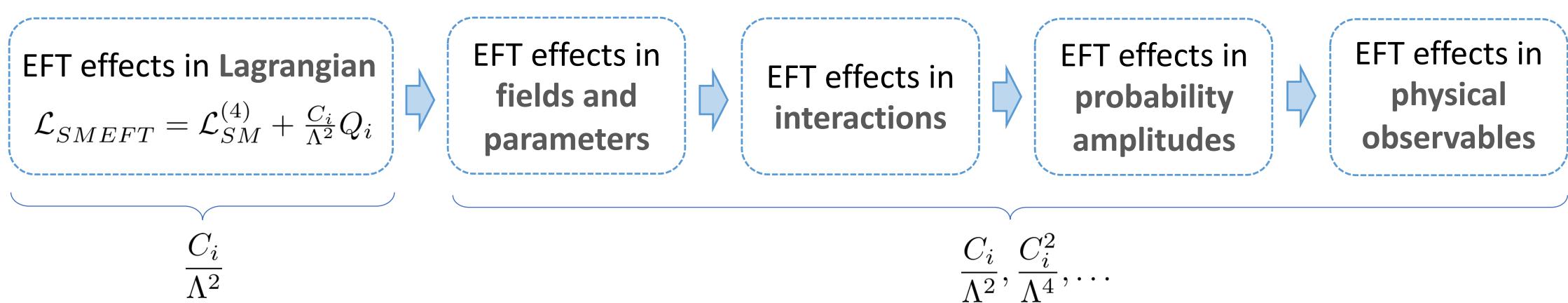
hermitian			non-hermitian
$(\bar{L}L)(\bar{L}L)$	$(\bar{R}R)(\bar{R}R)$	$(\bar{L}L)(\bar{R}R)$	$(\bar{L}R)(\bar{L}R) + \text{h.c.}$
$Q_{\ell\ell}$ $(\bar{\ell}_p \gamma_\mu \ell_r)(\bar{\ell}_s \gamma^\mu \ell_t)$	Q_{ee} $(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$	$Q_{\ell e}$ $(\bar{\ell}_p \gamma_\mu \ell_r)(\bar{e}_s \gamma^\mu e_t)$	$Q_{quqd}^{(1)}$ $(\bar{q}_p^i u_r) \varepsilon_{ij} (\bar{q}_s^j d_t)$
$Q_{qq}^{(1)}$ $(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{uu} $(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	$Q_{\ell u}$ $(\bar{\ell}_p \gamma_\mu \ell_r)(\bar{u}_s \gamma^\mu u_t)$	$Q_{quqd}^{(8)}$ $(\bar{q}_p^i T^A u_r) \varepsilon_{ij} (\bar{q}_s^j T^A d_t)$
$Q_{qq}^{(3)}$ $(\bar{q}_p \gamma_\mu \tau^I q_r)(\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd} $(\bar{d}_p \gamma_\mu d_r)(\bar{d}_s \gamma^\mu d_t)$	$Q_{\ell d}$ $(\bar{\ell}_p \gamma_\mu \ell_r)(\bar{d}_s \gamma^\mu d_t)$	$Q_{\ell equ}^{(1)}$ $(\bar{\ell}_p^i e_r) \varepsilon_{ij} (\bar{q}_s^j u_t)$
$Q_{\ell q}^{(1)}$ $(\bar{\ell}_p \gamma_\mu \ell_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{eu} $(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{qe} $(\bar{q}_p \gamma_\mu q_r)(\bar{e}_s \gamma^\mu e_t)$	$Q_{\ell equ}^{(3)}$ $(\bar{\ell}_p^i \sigma_{\mu\nu} e_r) \varepsilon_{ij} (\bar{q}_s^j \sigma^{\mu\nu} u_t)$
$Q_{\ell q}^{(3)}$ $(\bar{\ell}_p \gamma_\mu \tau^I \ell_r)(\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed} $(\bar{e}_p \gamma_\mu e_r)(\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$ $(\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t)$	
	$Q_{ud}^{(1)}$ $(\bar{u}_p \gamma_\mu u_r)(\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$ $(\bar{q}_p \gamma_\mu T^A q_r)(\bar{u}_s \gamma^\mu T^A u_t)$	
	$Q_{ud}^{(8)}$ $(\bar{u}_p \gamma_\mu T^A u_r)(\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$ $(\bar{q}_p \gamma_\mu q_r)(\bar{d}_s \gamma^\mu d_t)$	$(\bar{L}R)(\bar{R}L) + \text{h.c.}$
		$Q_{qd}^{(8)}$ $(\bar{q}_p \gamma_\mu T^A q_r)(\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{\ell edq}$ $(\bar{\ell}_p^i e_r)(\bar{d}_s q_{ti})$

Effects of SMEFT interactions - recap

- Effective operators at Λ_{EW} induce “direct” and “indirect” contributions of their Wilson coefficients in physical observables.

Modify existent interactions
+
New EFT interactions

Shift fields and parameters from
the SM ones



SMEFT predictions

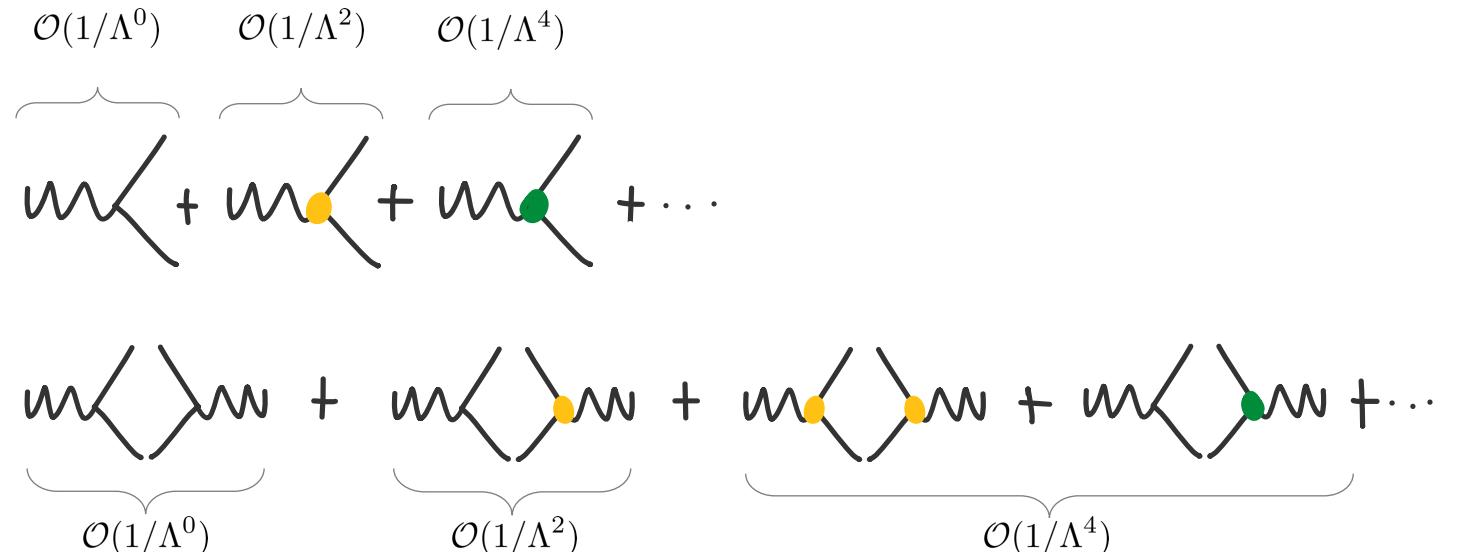
$$\mathcal{L}_{SMEFT} = \mathcal{L}_{SM}^{(4)} + \frac{C_i}{\Lambda^2} Q_i$$

Fields and parameters

Interactions

Probability amplitudes

Physical observables



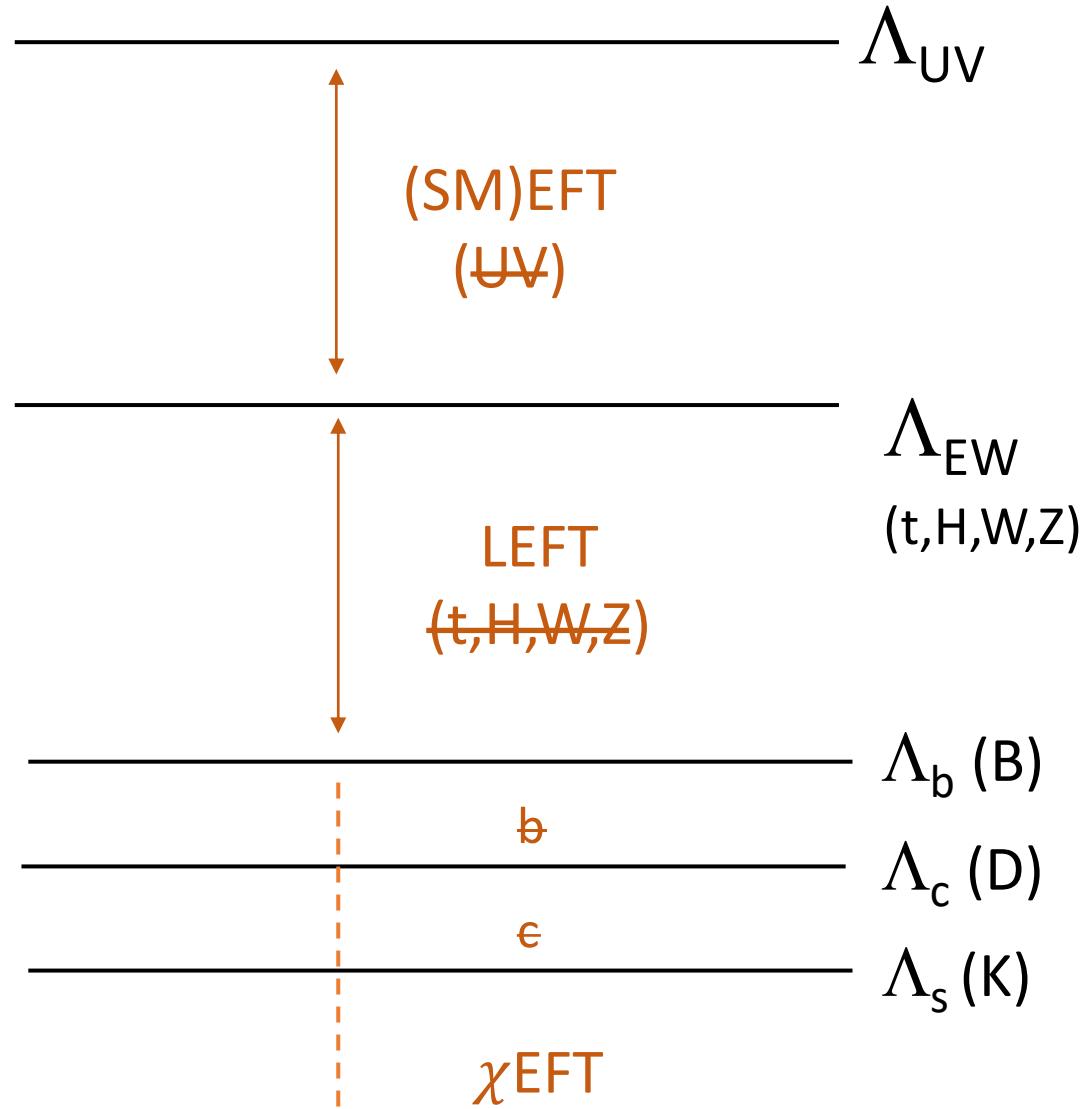
$$O_{SMEFT} = O_{SM} + \underbrace{\Delta O^{(1)}}_{\mathcal{O}(1/\Lambda^2)} + \underbrace{\Delta O^{(2)}}_{\mathcal{O}(1/\Lambda^4)} + \dots$$

Constraining the SMEFT

- **Bottom-up:** Global fits of collider observables (EW, Higgs, top), flavor observables, low energy observables.
- **Top-down:** Matching to UV models.

The full picture

Connecting far apart scales (from BSM to flavor) naturally lends itself to the EFT framework



Heavy physics decouples and leaves effective contact interactions of $\text{dim} > 4$

$$\mathcal{L}_{SMEFT} = \mathcal{L}_{SM} + \sum_{i,d} \frac{C_{i,d}^{\text{SMEFT}}}{\Lambda^2} \mathcal{O}_{i,d}^{\text{SMEFT}}$$

RGE

EFT operators in terms of SM fields

RGE

WC depend on $m_t, M_W, M_Z, M_H, \dots M_x$

$$\mathcal{L}_{LEFT} = \mathcal{L}_{QCD+QED} + \sum_{i,d} \frac{C_{i,d}^{\text{LEFT}}}{v^2} \mathcal{O}_{i,d}^{\text{LEFT}}$$

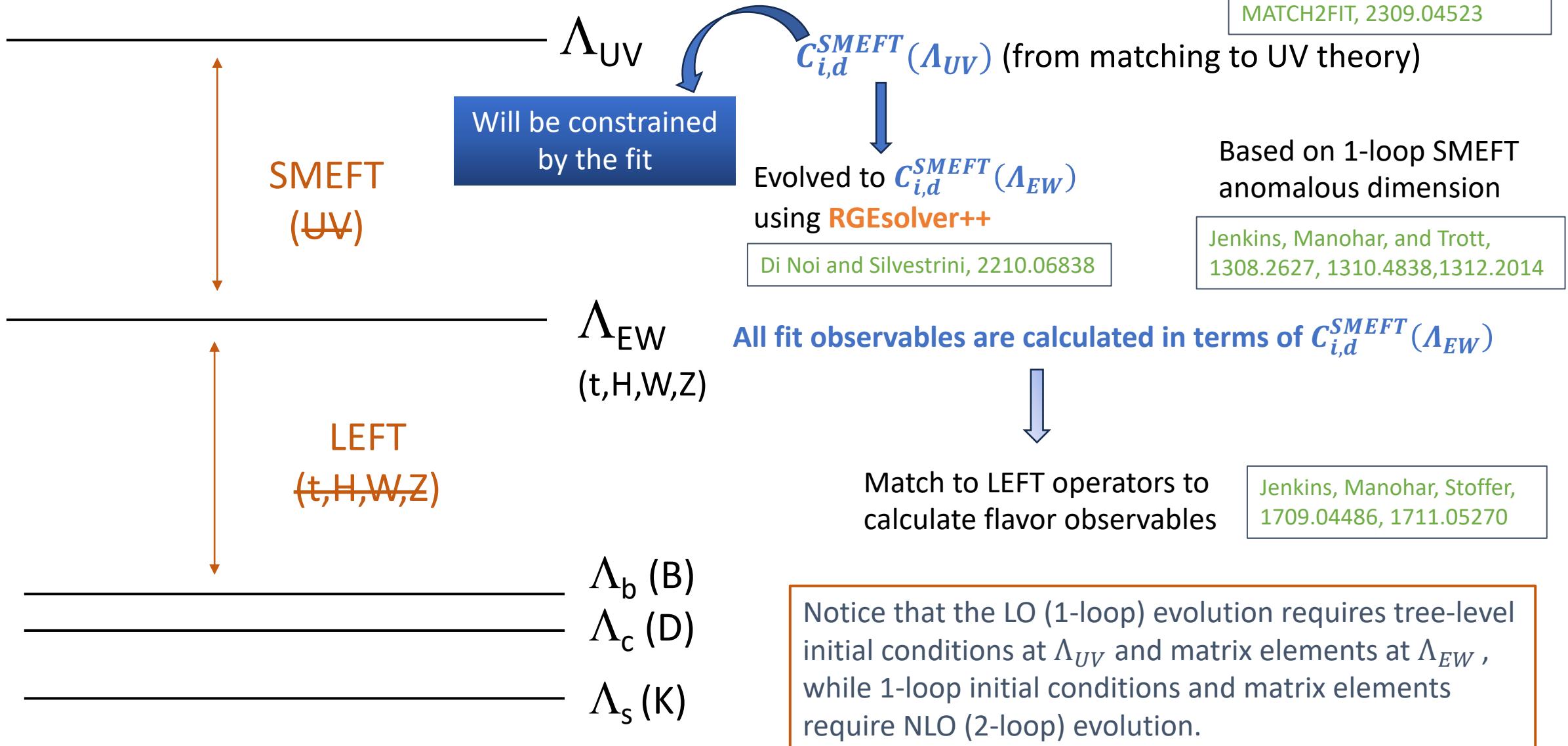
$\mu \frac{dC_i}{d\mu} = \gamma_{ij} C_j \longrightarrow C_i(\mu) = U(\mu, \mu_0)_{ij} C_j(\mu_0)$ of the corresponding (effective) theory

Global fits of the SMEFT

- **Bottom-up approach:** based on symmetry assumptions used in \mathcal{L}_{SMEFT} .
- Effects of new physics can then be constrained using the **broad spectrum of precision measurement available from EW, Higgs, top, flavor physics and more.**
- With **increasing precision** in both theory and experiments, constraints **could start to show intriguing patterns and guide future explorations.**

Bottom-up: global fits of the SMEFT

Connecting far apart scales naturally lends itself to the EFT framework



Need a framework

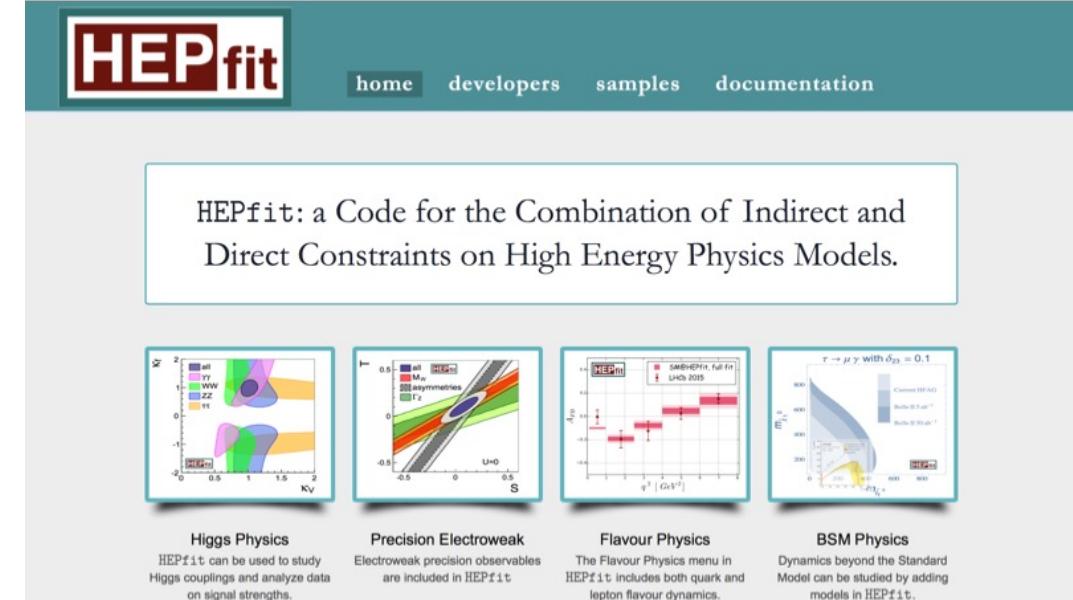
Statistical framework based on a Bayesian MCMC analysis as implemented in
BAT (Bayesian Analysis Toolkit)
Caldwell et al., arXiv:0808.2552

Supports SM (fully implemented) and BSM models, in particular the dim-6 SMEFT

Used for several global fit and future collider projections

New release will include EW, Higgs, top, and flavor observables in the SM and the SMEFT with

- SM predictions at NLO or higher
- SMEFT at tree level (dim-6 operators only)
- RGE running of the SMEFT Wilson coefficients
- Linear and quadratic effects from dim-6 operators



<http://hepfit.roma1.infn.it>

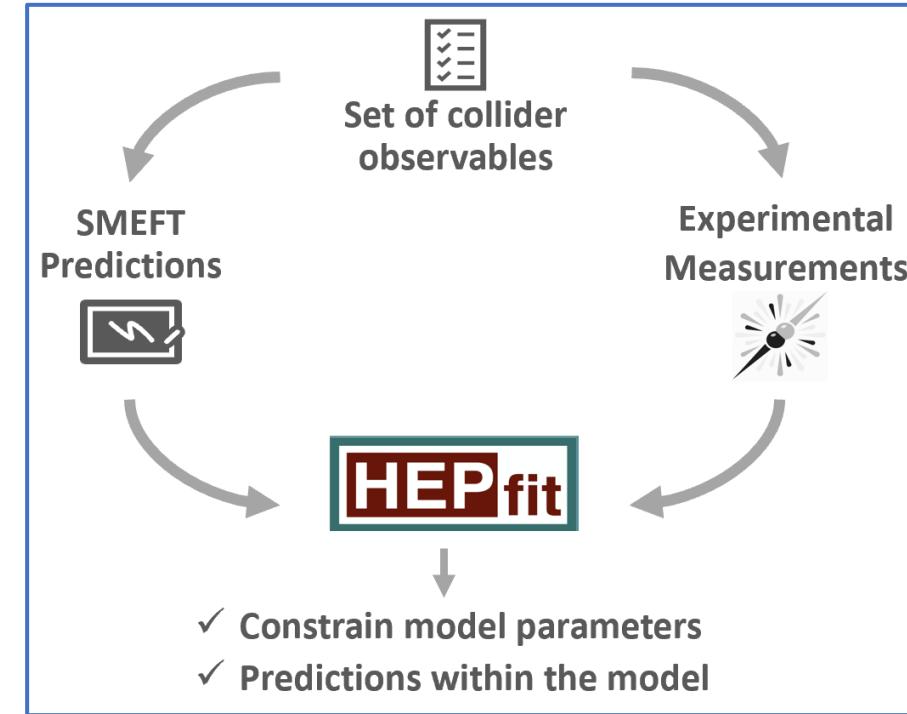
J. De Blas et al., 1910.14012

Other existing frameworks for SMEFT global fits:
SMEFiT, Celada et al. 2105.00006, 2302.06660, 2404.12809
Fitmaker, Ellis et al. 2012.02779
Allwicher et al, 2311.00020
Cirigliano et al. 2311.00021
Bartocci et al. 2311.04963

Fit EW, Higgs, top, DY, di-boson, flavor observables

Constraining new physics through the spectrum of LHC measurements and beyond

- **EW precision observables**
 - Z-pole observables (LEP I, LEP II, SLD)
 - M_W, Γ_W (Tevatron, LHC)
- **Higgs boson observables**
 - Signal strengths.
 - Simplified Template Cross Sections (STXS)
- **Top quark observables**
 - $pp \rightarrow t\bar{t}, t\bar{t}Z, t\bar{t}W, t\bar{t}\gamma, tZq, t\gamma q, tW, \dots$
- **Drell-Yan, Di-boson measurements**
 - $pp \rightarrow W, Z \rightarrow f_i \bar{f}_j$
 - $pp \rightarrow WZ, WW, ZZ, Z\gamma$
- **Flavor observables**
 - $\Delta F=2$: $\Delta M_{B_{d,s}}, D^0 - \bar{D}^0, \varepsilon_K$
 - Leptonic decays: $B_{d,s} \rightarrow \mu^+ \mu^-, B \rightarrow \tau\nu, D \rightarrow \tau\nu, K \rightarrow \mu\nu, \pi \rightarrow \mu\nu$
 - Semi-leptonic decays: $B \rightarrow D^{(*)} l\nu, K \rightarrow \pi l\nu, B \rightarrow K l\nu, B, K \rightarrow \pi l\nu$
 - Radiative B decays ($B \rightarrow X_{s,d} \gamma$)



SMEFT predictions

A given observable will be written as

$$O_{\text{SMEFT}} = O_{\text{SM}} + \Delta O^{(1)} + \Delta O^{(2)} + \dots$$

SM: including SM
higher-order corrections

SMEFT: tree level

Observables have been calculated either analytically and via parametrizations obtained using various tools (MG5_aMC@NLO with **SMEFTci2**, a new UFO file developed for this study, Feynart+Feyncalc for loop-induced Higgs decays, ...)

Including direct and indirect SMEFT effects from
dim-6 operators up to $O(1/\Lambda^4)$ [by A. Goncalves]

See also, SmeftFR-v3, Dedes et al. 2302.01353

Example 1: EW precision observables

- Z-pole observables, W observables
- Fully analytic expressions

$$\Gamma_{Z,f} = N_f \frac{G_F M_Z^3}{24\sqrt{2}\pi} 4 \left[(g_{V,f})^2 + (g_{A,f})^2 \right]$$

$$R_e^0 = \frac{\Gamma_{had}}{\Gamma_e} \quad R_{q,\nu}^0 = \frac{\Gamma_{q,\nu}}{\Gamma_{had}}$$

$$\sigma_{had}^0 = \frac{12\pi}{M_Z^2} \frac{\Gamma_e \Gamma_{had}}{\Gamma_Z^2}$$

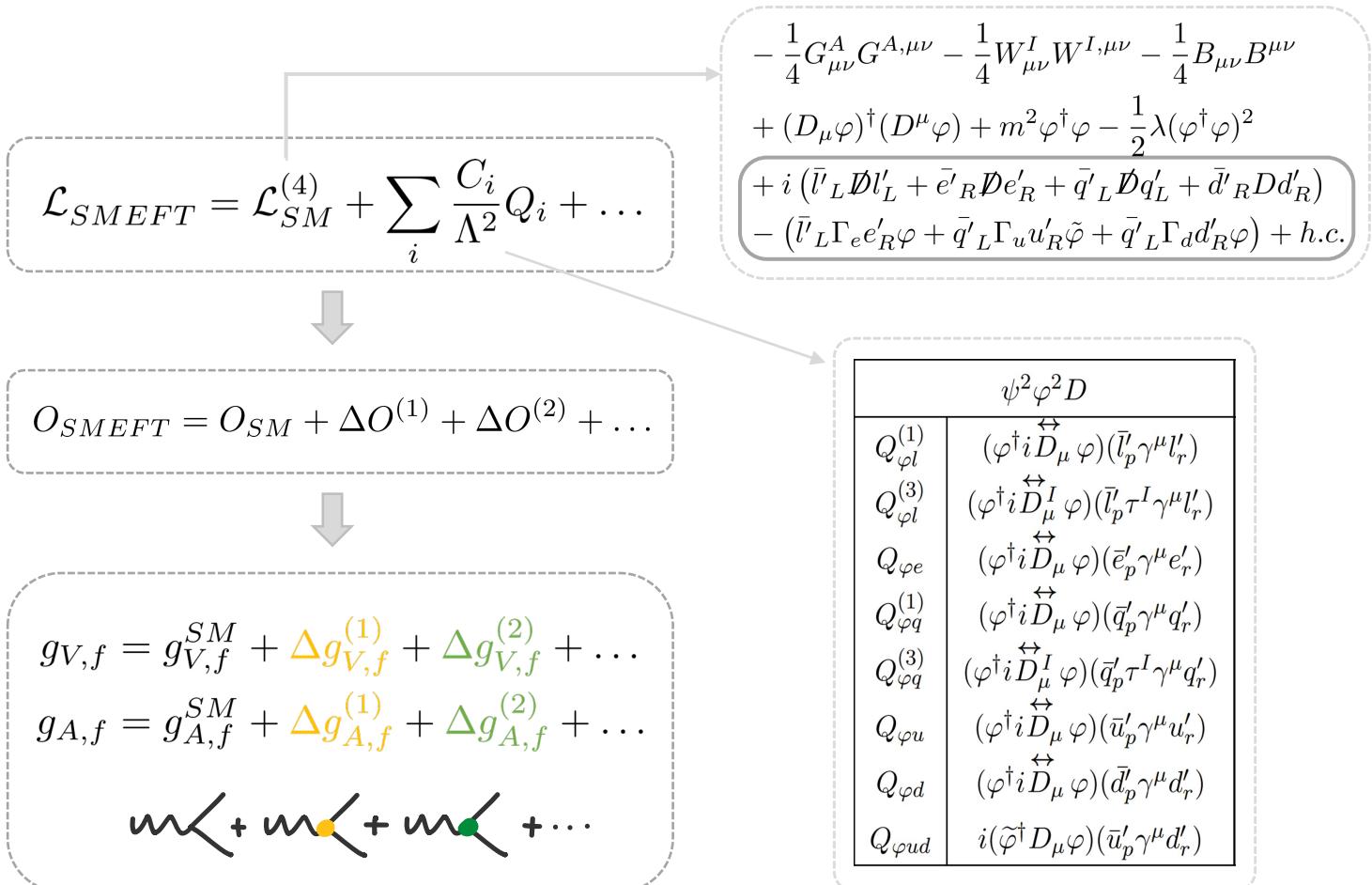
$$A_f = \frac{2 \left(\frac{g_{V,f}}{g_{A,f}} \right)}{1 + \left(\frac{g_{V,f}}{g_{A,f}} \right)^2} \quad A_{FB,f} = \frac{3}{4} A_e A_f$$

Z

$$\sin^2 \theta_{eff,l} = \frac{1}{4} \left(1 - \frac{g_{V,l}}{g_{A,l}} \right)$$

W[±]

$$M_W \quad \Gamma_{(W \rightarrow f_i f_j)} \quad Br W_{fifj}$$

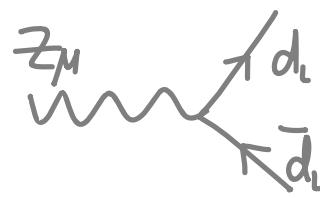


- **Z-pole observables: effective couplings**

$$\mathcal{L}_{SMEFT} = \mathcal{L}_{SM}^{(4)} + \sum_i \frac{C_i}{\Lambda^2} Q_i + \dots$$

$$\supset -\frac{2\widetilde{M}_Z}{\widetilde{v}} \left(\sum_f g_{L,f} P_L \gamma^\mu (Z_\mu \bar{f} f) + \sum_f g_{R,f} P_R \gamma^\mu (Z_\mu \bar{f} f) \right)$$

e.g.



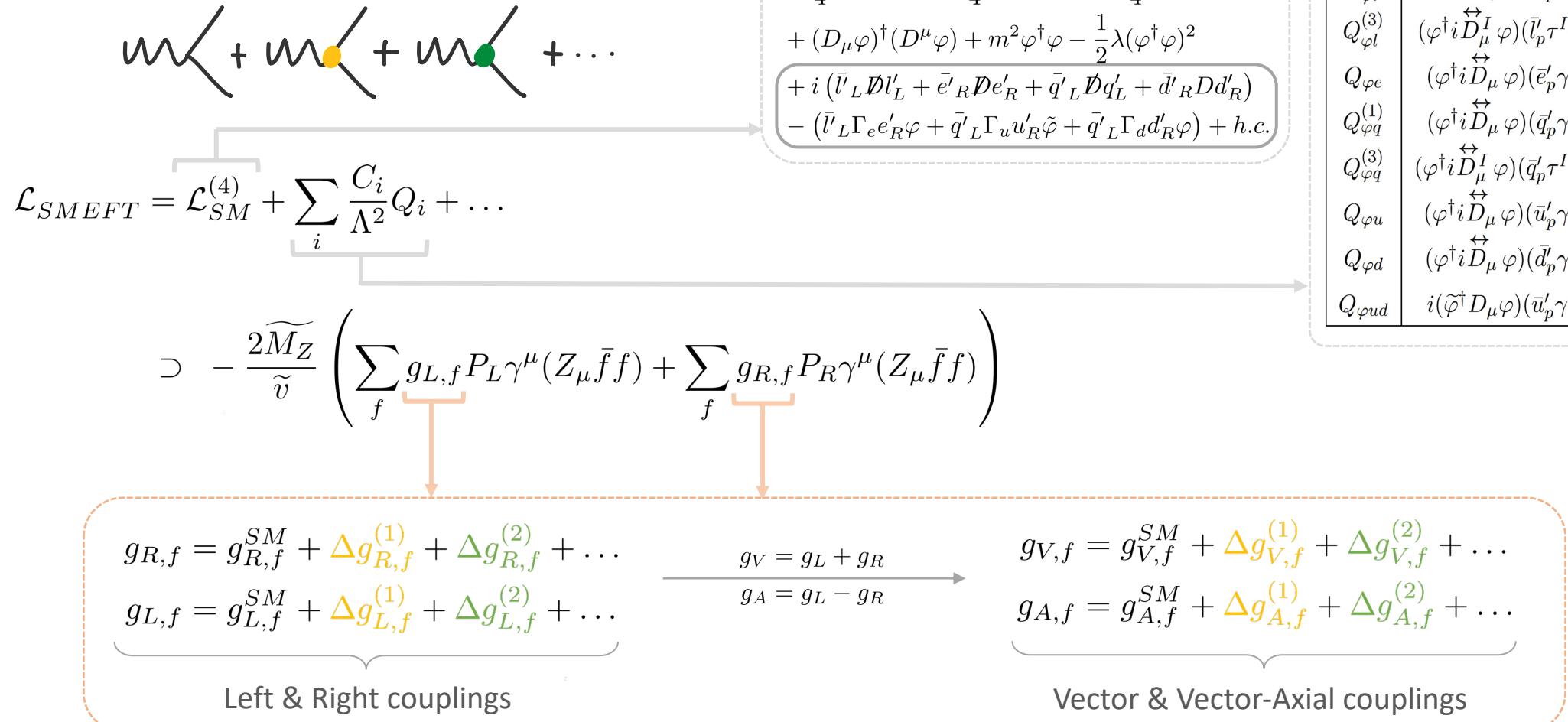
$$\left\{ \begin{array}{l} i\gamma^\mu P_L \left[\frac{3\bar{g}_W^2 + \bar{g}_1^2}{6\sqrt{\bar{g}_1^2 + \bar{g}_W^2}} \right. \\ + \frac{\bar{g}_1\bar{g}_W(3\bar{g}_1^2 + \bar{g}_W^2)}{6(\bar{g}_1^2 + \bar{g}_W^2)^{3/2}} \hat{C}_{\varphi WB} \bar{v}^2 + \frac{\sqrt{\bar{g}_1^2 + \bar{g}_W^2}}{2} \left(\hat{C}_{\varphi q}^{(1)} + \hat{C}_{\varphi q}^{(3)} \right) \bar{v}^2 \\ \left. + \frac{\bar{g}_1\bar{g}_W(3\bar{g}_1^2 + \bar{g}_W^2)}{6(\bar{g}_1^2 + \bar{g}_W^2)^{3/2}} \hat{C}_{\varphi WB} (\hat{C}_{\varphi W} + \hat{C}_{\varphi B}) \bar{v}^4 + \frac{(\bar{g}_1^6 + 8\bar{g}_1^2\bar{g}_W^4 + 3\bar{g}_W^6)}{12(\bar{g}_1^2 + \bar{g}_W^2)^{5/2}} \hat{C}_{\varphi WB}^2 \bar{v}^4 + \frac{\bar{g}_1\bar{g}_W}{2\sqrt{\bar{g}_1^2 + \bar{g}_W^2}} \hat{C}_{\varphi WB} \left(\hat{C}_{\varphi q}^{(1)} + \hat{C}_{\varphi q}^{(3)} \right) \bar{v}^4 \right] \end{array} \right.$$

$$\{\bar{g}_W, \bar{g}_1, \bar{v}, \lambda\} \xrightarrow{\text{tree-level relations}} \{\bar{\alpha}, \bar{M}_Z, \bar{G}_F, \bar{M}_h\} \xrightarrow{\widetilde{p} = \bar{p}(1 + \delta_p^{(1)} + \delta_p^{(2)} + \dots)} \{\widetilde{\alpha}, \widetilde{M}_Z, \widetilde{G}_F, \widetilde{M}_h\}$$

$$\begin{aligned} & -\frac{1}{4} G_{\mu\nu}^A G^{A,\mu\nu} - \frac{1}{4} W_{\mu\nu}^I W^{I,\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} \\ & + (D_\mu \varphi)^\dagger (D^\mu \varphi) + m^2 \varphi^\dagger \varphi - \frac{1}{2} \lambda (\varphi^\dagger \varphi)^2 \\ & + i (\bar{l}'_L \not{D} l'_L + \bar{e}'_R \not{D} e'_R + \bar{q}'_L \not{D} q'_L + \bar{d}'_R \not{D} d'_R) \\ & - (\bar{l}'_L \Gamma_e e'_R \varphi + \bar{q}'_L \Gamma_u u'_R \varphi + \bar{q}'_L \Gamma_d d'_R \varphi) + h.c. \end{aligned}$$

$\psi^2 \varphi^2 D$	
$Q_{\varphi l}^{(1)}$	$(\varphi^\dagger i \not{D}_\mu \varphi) (\bar{l}'_p \gamma^\mu l'_r)$
$Q_{\varphi l}^{(3)}$	$(\varphi^\dagger i \not{D}_\mu^I \varphi) (\bar{l}'_p \tau^I \gamma^\mu l'_r)$
$Q_{\varphi e}$	$(\varphi^\dagger i \not{D}_\mu \varphi) (\bar{e}'_p \gamma^\mu e'_r)$
$Q_{\varphi q}^{(1)}$	$(\varphi^\dagger i \not{D}_\mu \varphi) (\bar{q}'_p \gamma^\mu q'_r)$
$Q_{\varphi q}^{(3)}$	$(\varphi^\dagger i \not{D}_\mu^I \varphi) (\bar{q}'_p \tau^I \gamma^\mu q'_r)$
$Q_{\varphi u}$	$(\varphi^\dagger i \not{D}_\mu \varphi) (\bar{u}'_p \gamma^\mu u'_r)$
$Q_{\varphi d}$	$(\varphi^\dagger i \not{D}_\mu \varphi) (\bar{d}'_p \gamma^\mu d'_r)$
$Q_{\varphi ud}$	$i(\widetilde{\varphi}^\dagger \not{D}_\mu \varphi) (\bar{u}'_p \gamma^\mu d'_r)$

- Z-pole observables: effective couplings



- Z-pole observables: EFT expansion

For example,

$$\begin{aligned}
 \sin^2 \theta_{eff} &= \frac{1}{4} \left(1 - \frac{g_V}{g_A} \right) & \xrightarrow{\begin{array}{l} g_V = g_V^{SM} + \Delta g_V^{(1)} + \Delta g_V^{(2)} + \dots \\ g_A = g_A^{SM} + \Delta g_A^{(1)} + \Delta g_A^{(2)} + \dots \end{array}} & \sin^2 \theta_{eff} = \sin^2 \theta_{eff}^{SM} + \Delta \sin^2 \theta_{eff}^{(1)} + \Delta \sin^2 \theta_{eff}^{(2)} + \dots \\
 & & & \left. \begin{array}{c} \text{---} \\ \text{---} \end{array} \right\} \begin{array}{c} \text{---} \\ \text{---} \end{array} \\
 & & & - \frac{1}{4} \frac{g_A^{SM} \Delta g_V^{(1)} - g_V^{SM} \Delta g_A^{(1)}}{(g_A^{SM})^2} \\
 & & & \left. \begin{array}{c} \text{---} \\ \text{---} \end{array} \right\} \begin{array}{c} \text{---} \\ \text{---} \end{array} \\
 & & & \frac{1}{4} \frac{\Delta g_V^{(1)} \Delta g_A^{(1)}}{(g_A^{SM})^2} - \frac{1}{4} \frac{g_V^{SM} (\Delta g_A^{(1)})^2}{(g_A^{SM})^3} - \frac{1}{4} \frac{g_A^{SM} \Delta g_V^{(2)} - g_V^{SM} \Delta g_A^{(2)}}{(g_A^{SM})^2}
 \end{aligned}$$

And most generally,

$$O_{SMEFT} = O_{SM} + \Delta O^{(1)} + \Delta O^{(2)} + \dots$$

- W-pole observables:

$$\boxed{\Gamma_{(W \rightarrow f_i f_j)} \left\{ BrW_{f_i f_j} = \frac{\Gamma_{(W \rightarrow f_i f_j)}}{\Gamma_W} \right\}} \quad \boxed{M_W} \quad \rightsquigarrow \text{similar description as for the Z-observables}$$

EW observables: adding quadratic terms

Typical effect: lifting degeneracies among contributing coefficients

Observable	$C_{\varphi D}$	$C_{\varphi WB}$	$C_{\varphi L}^{(3)}$	C_{LL}	$C_{\varphi L}^{(1)}$	$C_{\varphi e}$	$C_{\varphi Q}^{(1)}$	$C_{\varphi Q}^{(3)}$	$C_{\varphi u}$	$C_{\varphi d}$	$C_{\varphi B}$	$C_{\varphi W}$	$C_{\varphi ud}$
A_l													
A_{FB}^l	✓	✓	✓	✓	✓	✓				✓	✓		
P_{τ}^{pol}													
$\sin \theta_{eff,l}^2$													
A_c	✓	✓	✓	✓			✓	✓	✓		✓	✓	
R_c^0													
A_b													
A_s	✓	✓	✓	✓			✓	✓		✓	✓	✓	
R_b^0													
A_{FB}^e	✓	✓	✓	✓	✓	✓	✓	✓	✓		✓	✓	
A_{FB}^b	✓	✓	✓	✓	✓	✓	✓	✓		✓	✓	✓	
R_l^0													
Γ_Z	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
σ_{had}^0													
M_W	✓	✓	✓	✓									
Γ_W	✓	✓	✓	✓	✓		✓			✓	✓	✓	✓
BrW													

$\mathcal{O}(1/\Lambda^4)$: degeneracy is (analytically) lifted

$\mathcal{O}(1/\Lambda^2)$: Constrain 8 independent relations

$$\hat{C}_{\varphi L}^{(3)} = \hat{C}_{\varphi L}^{(3)} + \frac{1}{4} \frac{\widetilde{c_W}^2}{\widetilde{s_W}^2} \hat{C}_{\varphi D} + \frac{\widetilde{c_W}}{\widetilde{s_W}} \hat{C}_{\varphi WB}$$

$$\hat{C}_{\varphi Q}^{(3)} = \hat{C}_{\varphi Q}^{(3)} + \frac{1}{4} \frac{\widetilde{c_W}^2}{\widetilde{s_W}^2} \hat{C}_{\varphi D} + \frac{\widetilde{c_W}}{\widetilde{s_W}} \hat{C}_{\varphi WB}$$

$$\hat{C}_{\varphi L}^{(1)} = \hat{C}_{\varphi L}^{(1)} + \frac{1}{4} \hat{C}_{\varphi D}$$

$$\hat{C}_{\varphi Q}^{(1)} = \hat{C}_{\varphi Q}^{(1)} - \frac{1}{12} \hat{C}_{\varphi D}$$

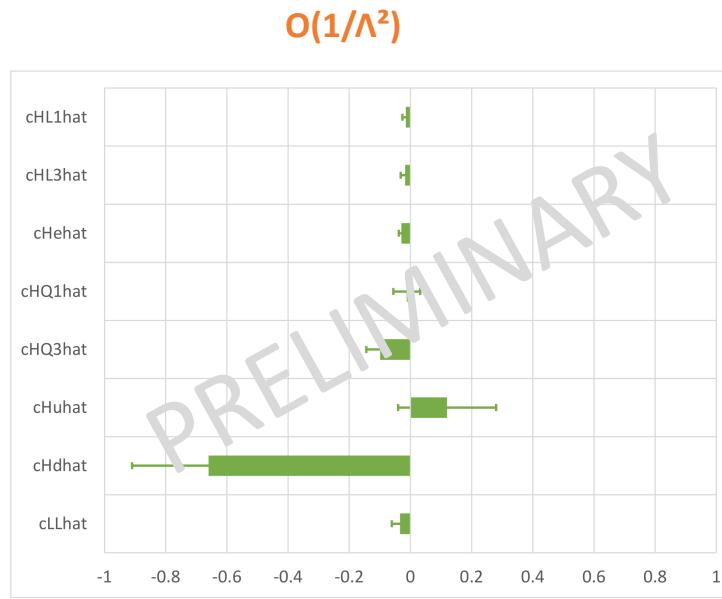
$$\hat{C}_{\varphi e} = \hat{C}_{\varphi e} + \frac{1}{2} \hat{C}_{\varphi D}$$

$$\hat{C}_{\varphi u} = \hat{C}_{\varphi e} - \frac{1}{3} \hat{C}_{\varphi D}$$

$$\hat{C}_{LL} = \hat{C}_{LL}$$

EW observables: adding quadratic terms

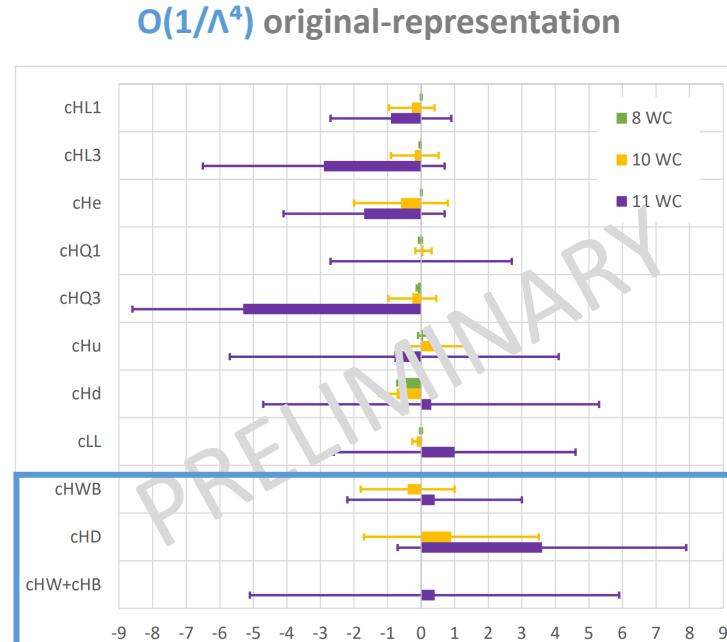
- Preliminary Global Fit of EW observables at quadratic order in the d=6 SMEFT:



Fit parameters	Analytically	Numerically
----------------	--------------	-------------

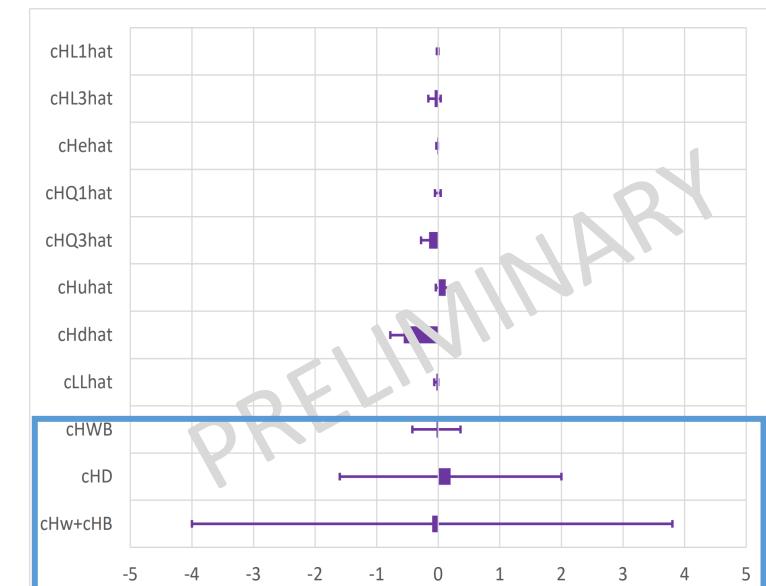
≤ 8	✓	✓
> 8	✗	✗

flat distributions
full correlations



Fit parameters	Analytically	Numerically
----------------	--------------	-------------

≤ 8	✓	✓
> 8	✓	✗



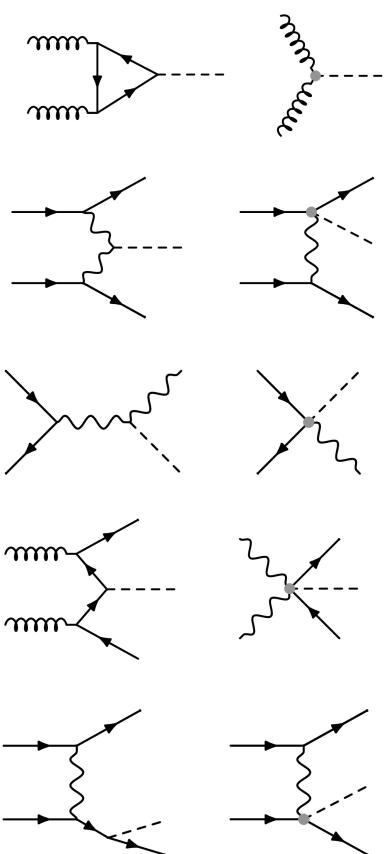
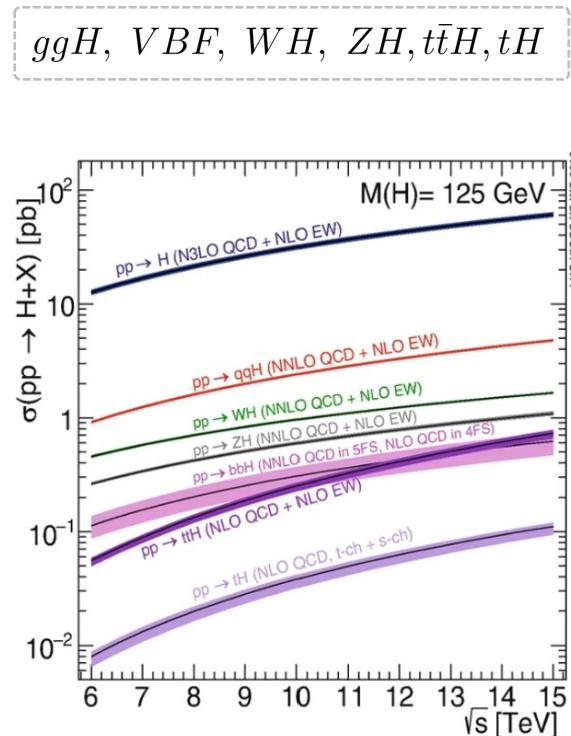
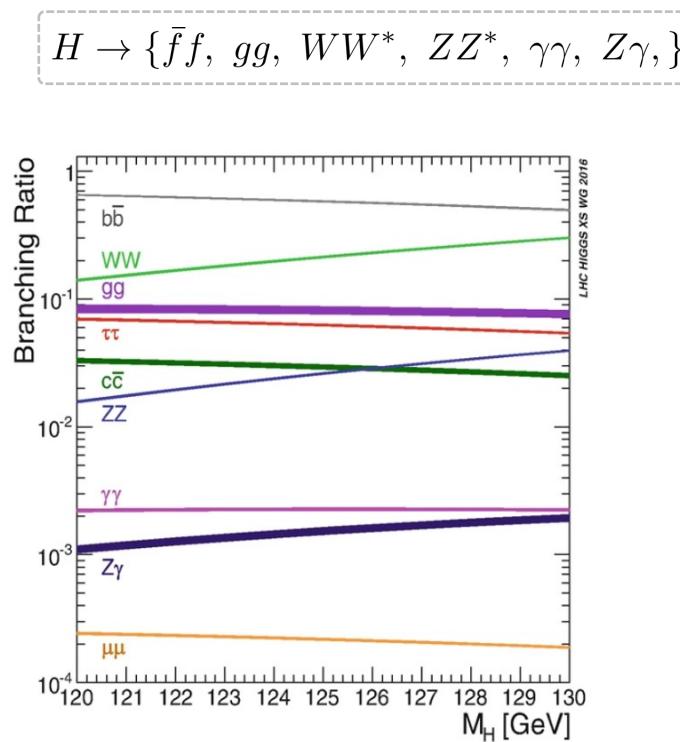
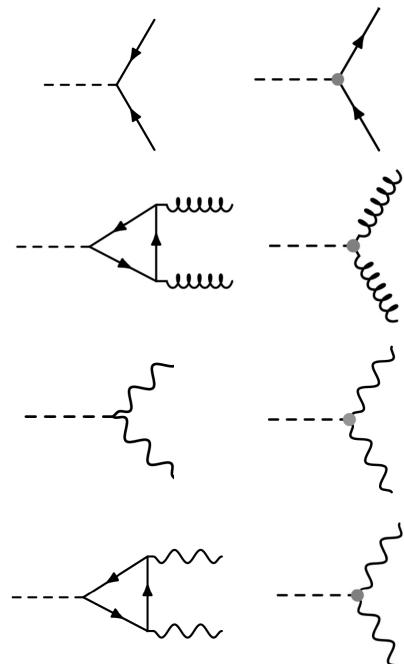
Fit parameters	Analytically	Numerically
----------------	--------------	-------------

≤ 8	✓	✓
> 8	✓	✓

improve sensitivity
for $\{c_{HWB}, c_{HD}, c_{HW+cHB}\}$

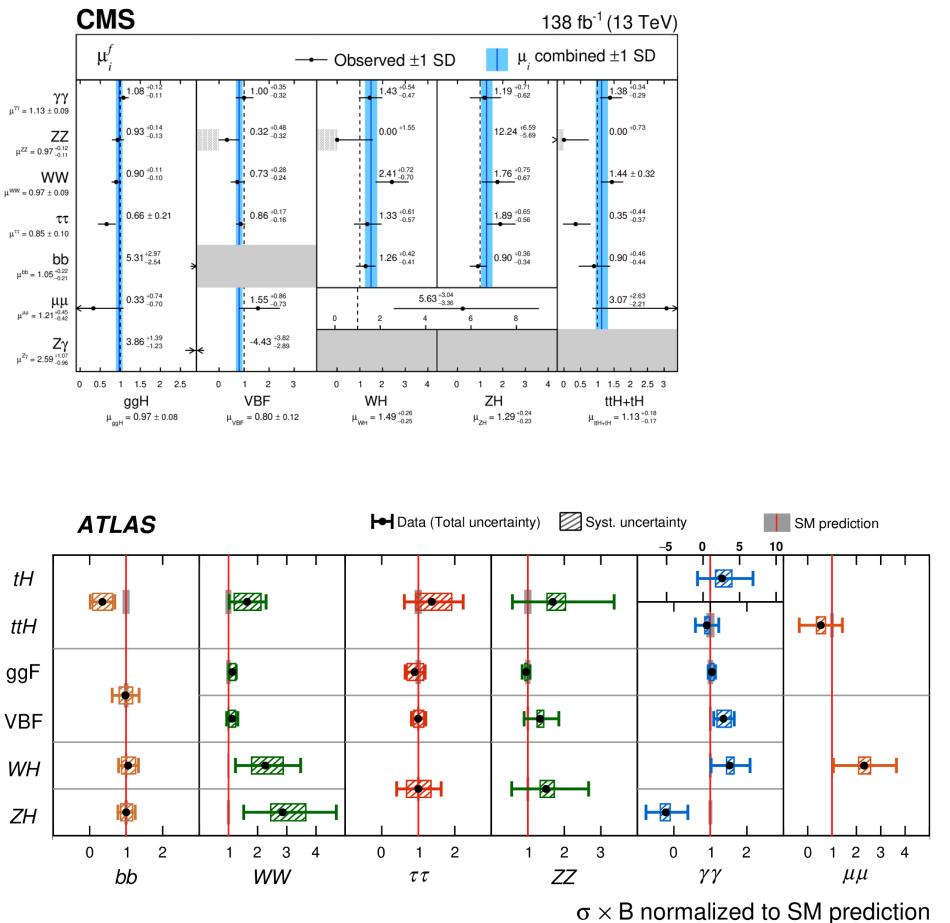
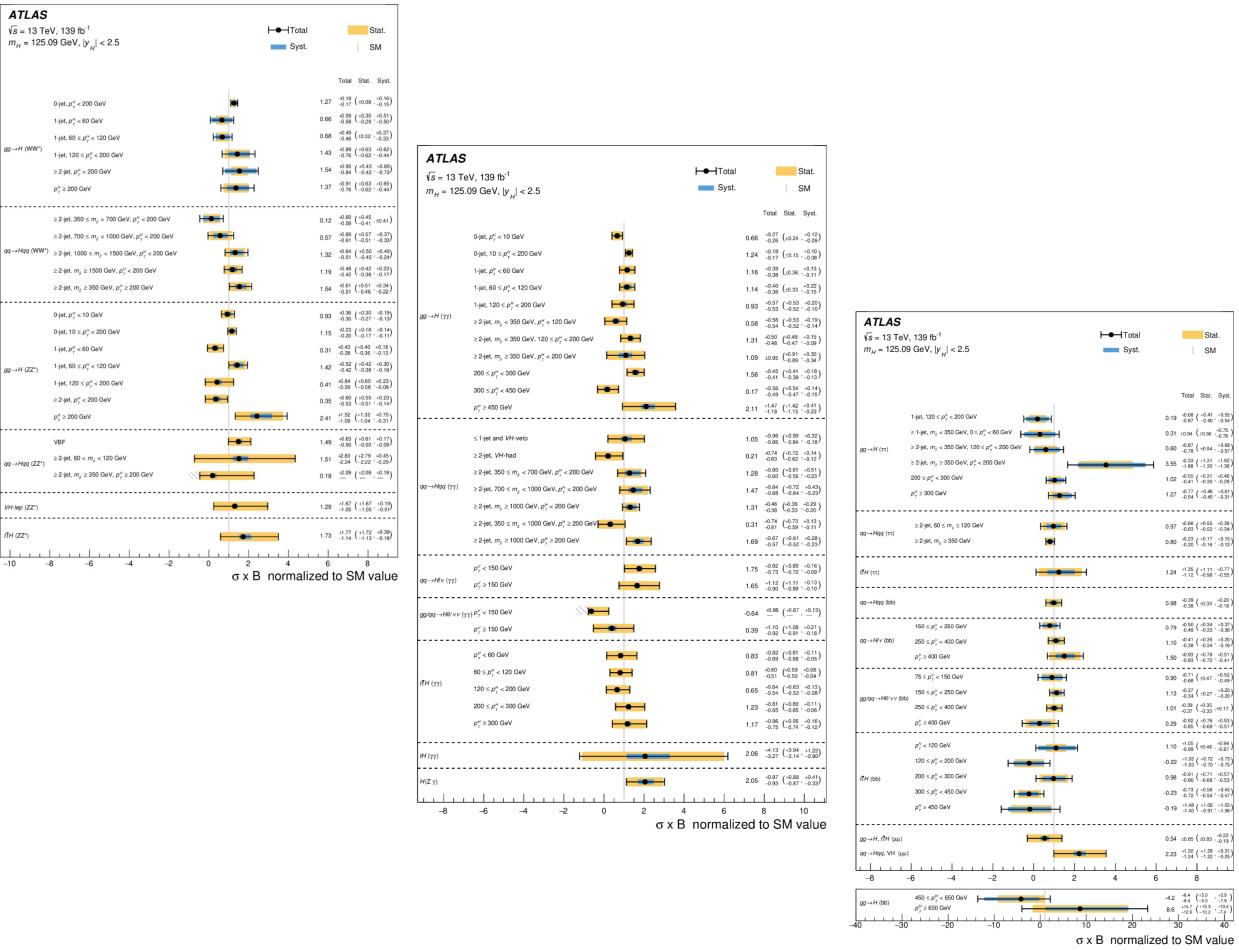
Example 2: Higgs observables

- Higgs-boson production cross-sections and branching ratios :



Higgs-boson Observables: exp. measurements

- Higgs-boson inclusive and fiducial μ 's measured by ATLAS and CMS:



SMEFT Predictions: Higgs-boson Observables

- Higgs-boson production cross-sections and branching ratios
- **Signal strength modifiers:**

- Production cross-sections as inclusive or fiducial observables through *Simplified Template Cross-Sections* (STXS)
- SMEFT predictions obtained differently depending on their complexity: Analytic vs. Numeric computations with *Madgraph*

[J. Alwall, et al
arXiv:1405.0301]

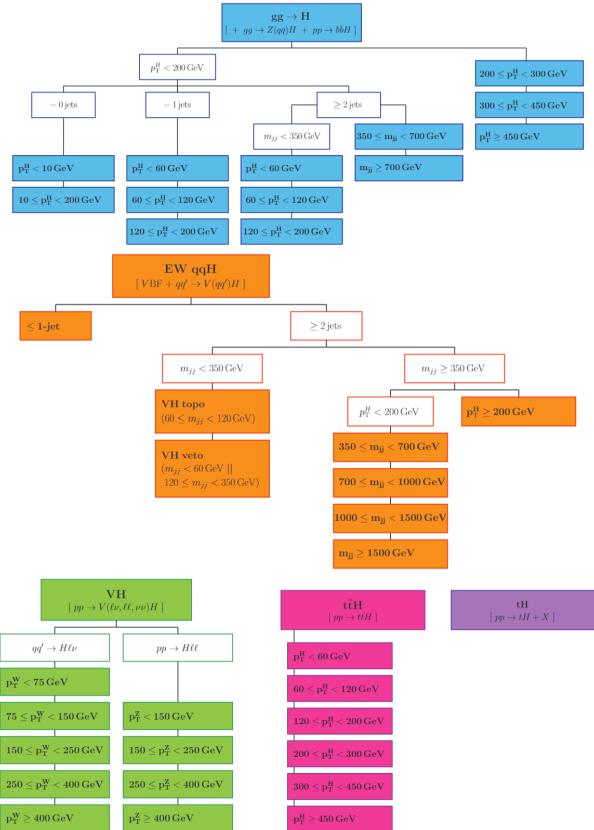
$$\mu_{ij} = \frac{\sigma_i \times Br_j}{\sigma_i^{SM} \times Br_j^{SM}}$$

With SMEFT expansion:

$$\mu_{ij} = 1 + \left(\frac{\Delta\sigma_i^{(1)}}{\sigma_i^{SM}} + \frac{\Delta Br_j^{(1)}}{Br_j^{SM}} \right) + \left(\frac{\Delta\sigma_i^{(2)}}{\sigma^{SM}} + \frac{\Delta Br_j^{(2)}}{Br_j^{SM}} + \frac{\Delta\sigma_i^{(1)}\Delta Br_j^{(1)}}{\sigma_i^{SM}Br_j^{SM}} \right) + \dots$$

$$Br_j^{SM} = \frac{\Gamma_j^{SM}}{\Gamma_H^{SM}} \quad \Delta Br_j^{(1)} = \frac{\Delta \Gamma_j^{(1)}}{\Gamma_H^{SM}} - \frac{\Delta \Gamma_H^{(1)}}{\Gamma_H^{SM}}$$

$$\Delta Br_j^{(2)} = \frac{\Delta \Gamma_j^{(2)}}{\Gamma_j^{SM}} - \frac{\Delta \Gamma_H^{(2)}}{\Gamma_H^{SM}} - \frac{\Delta \Gamma_j^{(1)}}{\Gamma_j^{SM}} \frac{\Delta \Gamma_H^{(1)}}{\Gamma_H^{SM}} + \left(\frac{\Delta \Gamma_H^{(1)}}{\Gamma_H^{SM}} \right)^2$$

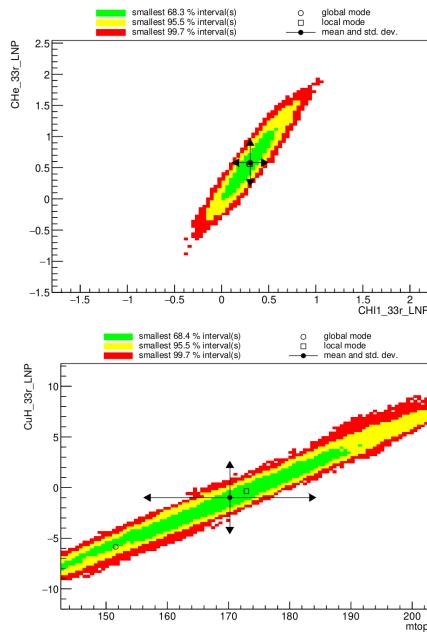
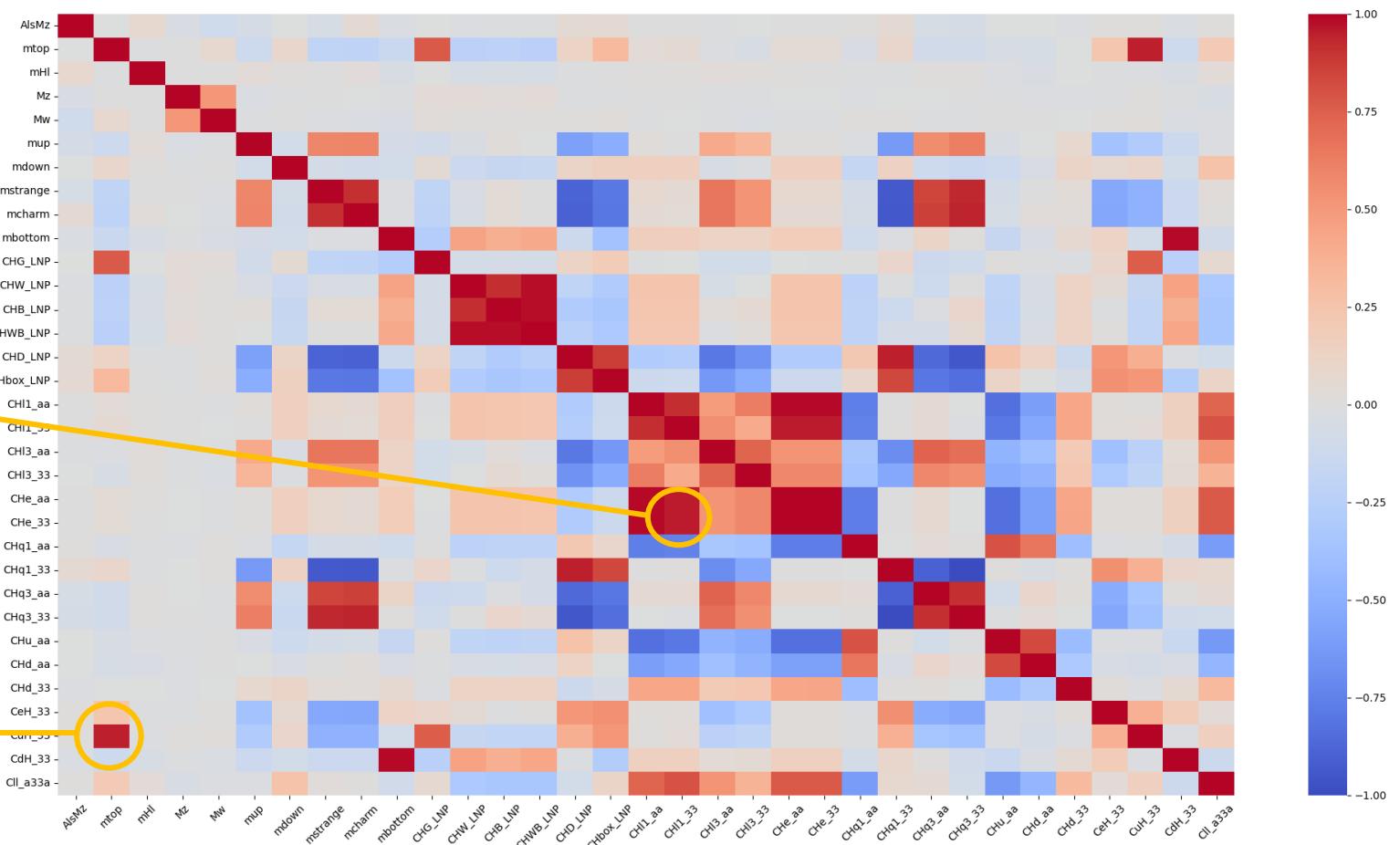


“Building blocks”

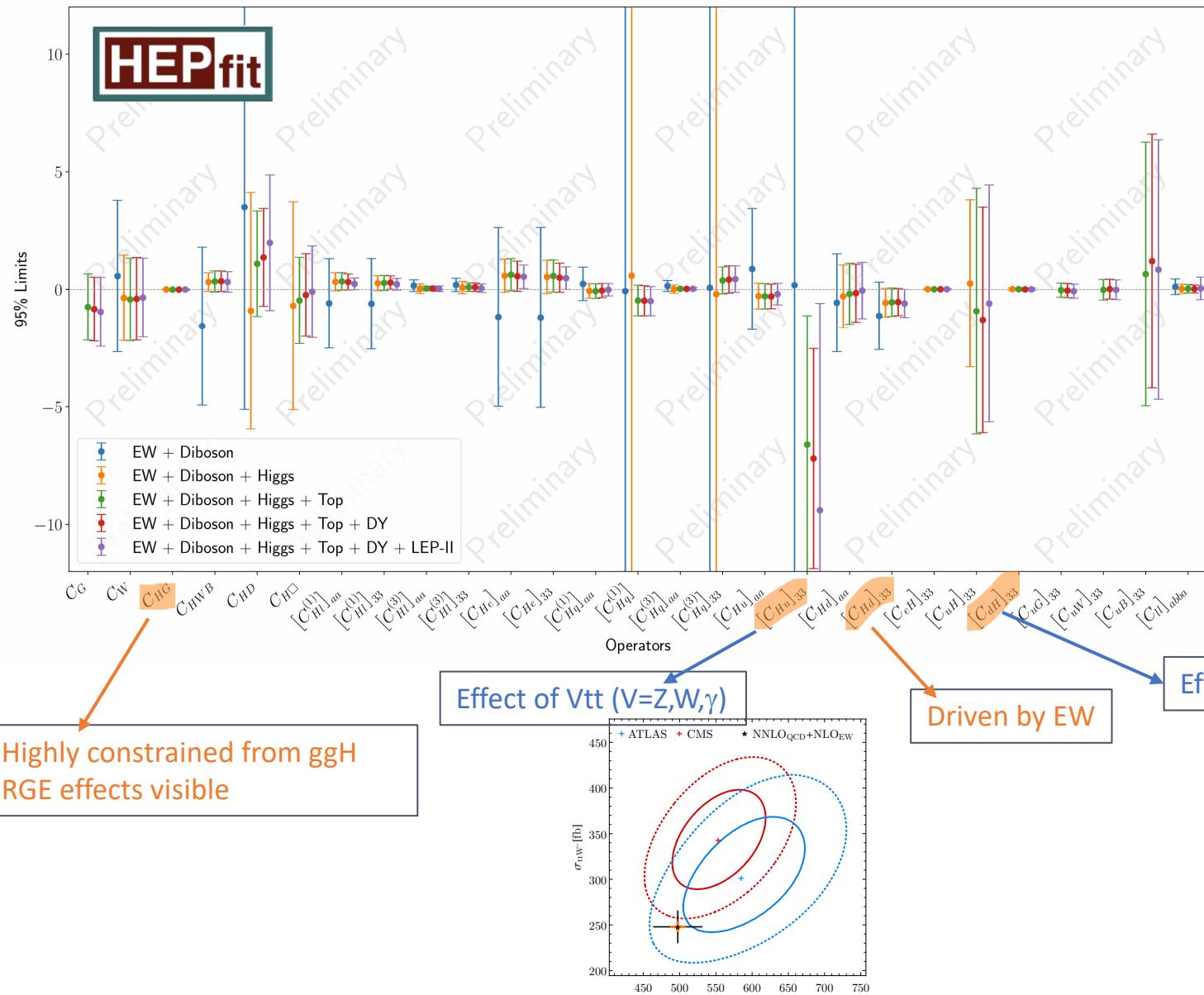
$$\frac{\Delta\sigma_i^{(1,2)}}{\sigma_{SM}^{SM}} \quad \frac{\Delta\Gamma_j^{(1,2)}}{\Gamma_{SM}^{SM}}$$

Global fit: Higgs-boson Observables

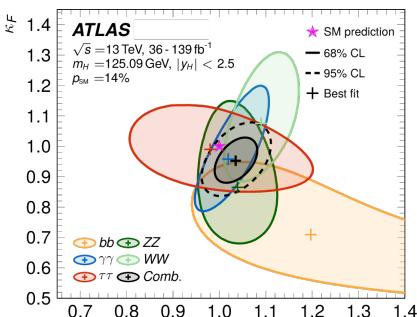
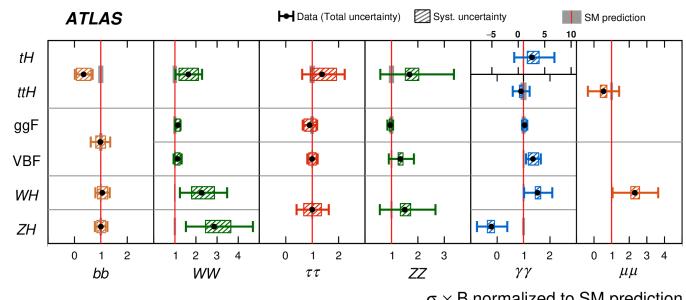
- Higgs-boson inclusive and fiducial μ 's measured by ATLAS and CMS
- STXS improve constraining power
- $C_W, C_{Hq,33}^{(1)}, C_{Hq,33}^{(3)}, C_{Hu,33}, C_{uW,33}, C_{HB,33}$ unconstrained by EWPO+Higgs
- Correlation on WCs:



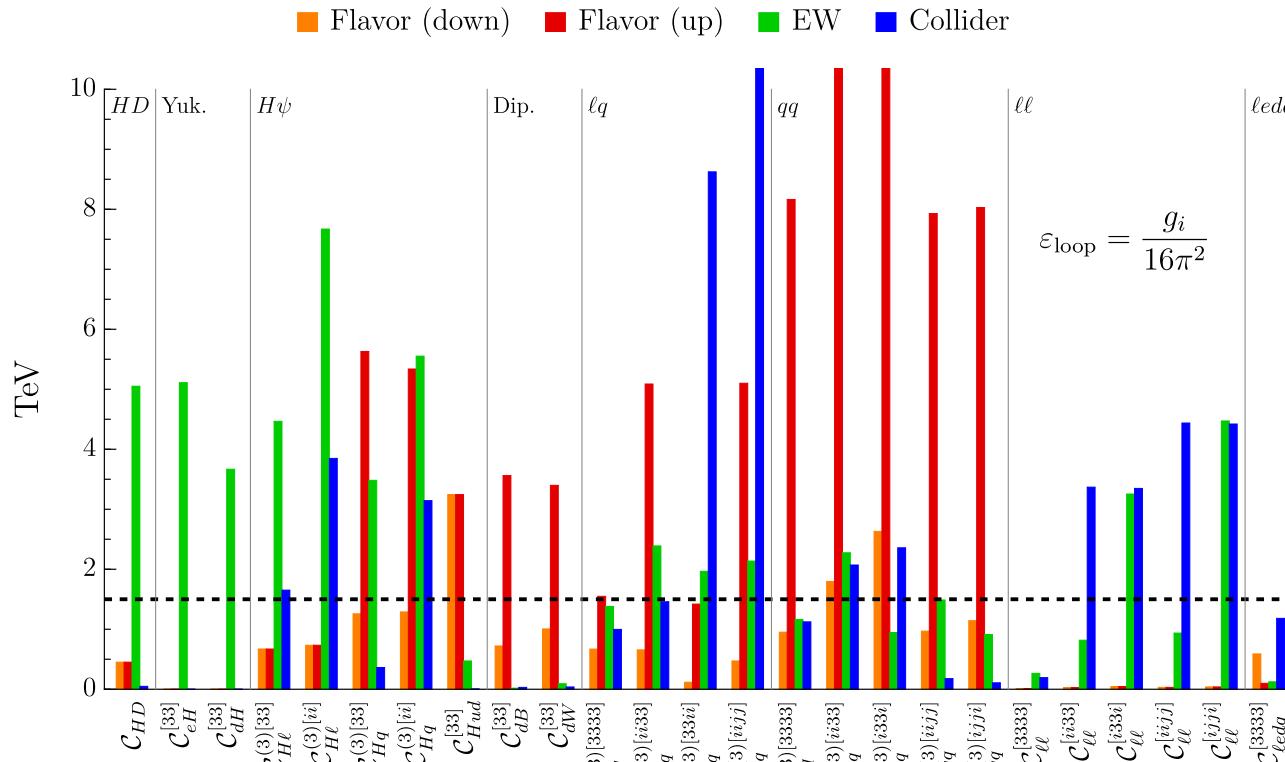
Global fit EW + Higgs + Top + ...



- Increasing constraining power when adding classes of observables
- Increased correlation among WC
- RGE evolution increases relations among WCs

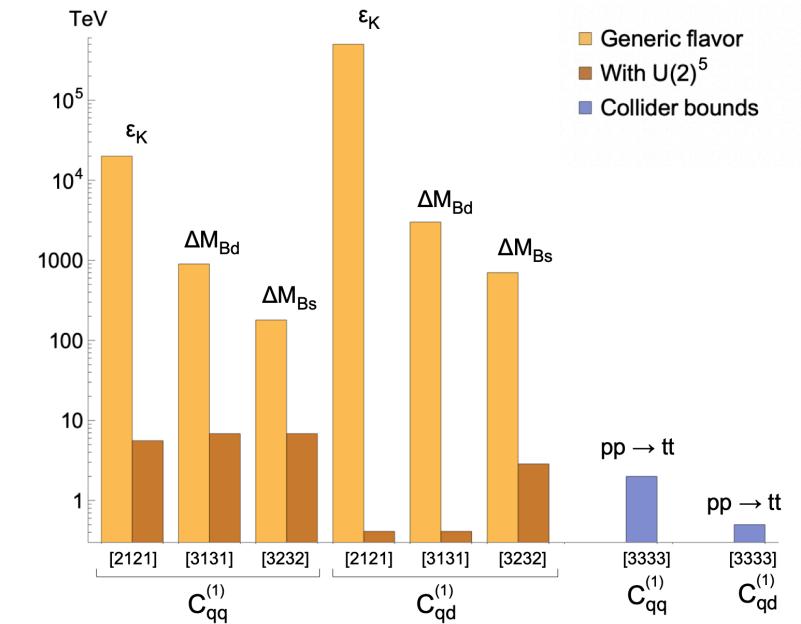


Adding flavor observables



[Allwicher et al., arXiv:2311.00020]

Impact on flavor assumption (see discussion of approximate symmetries in Lecture 2)



[Isidori and Wyler, arXiv:2303.16922]

Matching to UV models

- **Top-down**: quite powerful if guided by specific anomalies.
- Examples: $(g - 2)_\mu, \mu \rightarrow e\gamma$, flavor anomalies

A model with leptoquarks

Sharpen the relation between low energy measurements and UV theories

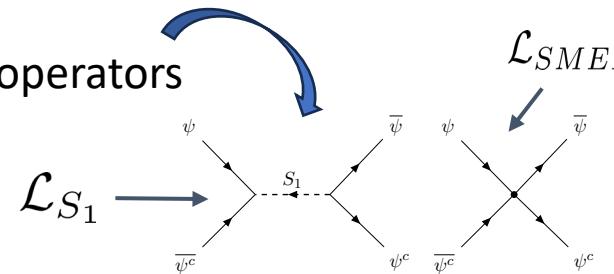
From Isidori and Wyler
arXiv:2303.16922

SM extension by a heavy colored scalar S_1 (leptoquark)

$$\mathcal{L}_{S_1} = \mathcal{L}_{SM} + (D_\mu S_1)^\dagger (D^\mu S_1) - M_S^2 S_1^+ S_1 - [\lambda_{pr}^L (\bar{q}_p^c \epsilon \ell_r) S_1 + \lambda_{pr}^R (\bar{u}_p^c e_r) S_1 + h.c.]$$

The **tree-level matching** projects on 4-fermion SMEFT operators

$$Q_{lq}^{(1,3)}, Q_{eu}, Q_{lequ}^{(1,3)} \rightarrow C_i = C_i(\lambda_{pr}^{L,R})$$



The **one-loop matching** projects on dipole operators (among others)

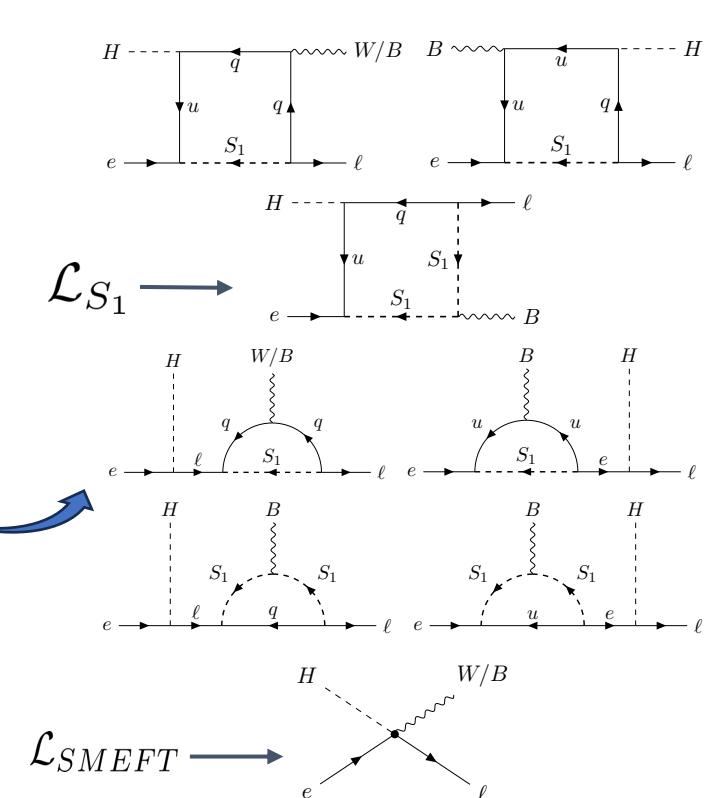
$$[Q_{eB}]_{pr} = (\bar{l}_p \sigma^{\mu\nu} e_r) H B_{\mu\nu} \text{ and } [Q_{eW}]_{pr} = (\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I H W_{\mu\nu}^I$$

Which can be related to the photon dipole upon SSB

$$[Q_{e\gamma}]_{pr} = \frac{v}{\sqrt{2}} \bar{e}_p^L \sigma^{\mu\nu} e_r^R F_{\mu\nu} \quad \begin{pmatrix} [\mathcal{C}_{e\gamma}]_{pr} \\ [\mathcal{C}_{eZ}]_{pr} \end{pmatrix} = \begin{pmatrix} c_\theta & -s_\theta \\ -s_\theta & -c_\theta \end{pmatrix} \begin{pmatrix} [C_{eB}]_{pr} \\ [C_{eW}]_{pr} \end{pmatrix}$$

→ $C_{e\gamma}(\lambda_{pr}^{L,R}, \ln(\mu_m^2/M_S^2))$

μ_m matching scale



A model with leptoquarks – cont'd

From RGE evolution in the SMEFT: $\mu_m \rightarrow \mu_W$

$$[C_X]_{pr}(\mu_l) = [C_X]_{pr}(\mu_m) + \frac{1}{16\pi^2} \ln\left(\frac{\mu_l}{\mu_m}\right) [\beta_X]_{pr} \rightarrow [C_{e\gamma}]_{pr}(\mu_W)$$

Notice: hidden in the RGE of $C_{e\gamma}$ is a strong dependence on the top Yukawa coupling y_t

From RGE in the LEFT: $\mu_W \rightarrow m_\mu$

$$[C_{e\gamma}]_{pr}(\mu_W) \rightarrow [C_{e\gamma}]_{pr}(\mu < \mu_W) \text{ e.g. } \mu \sim m_\mu$$

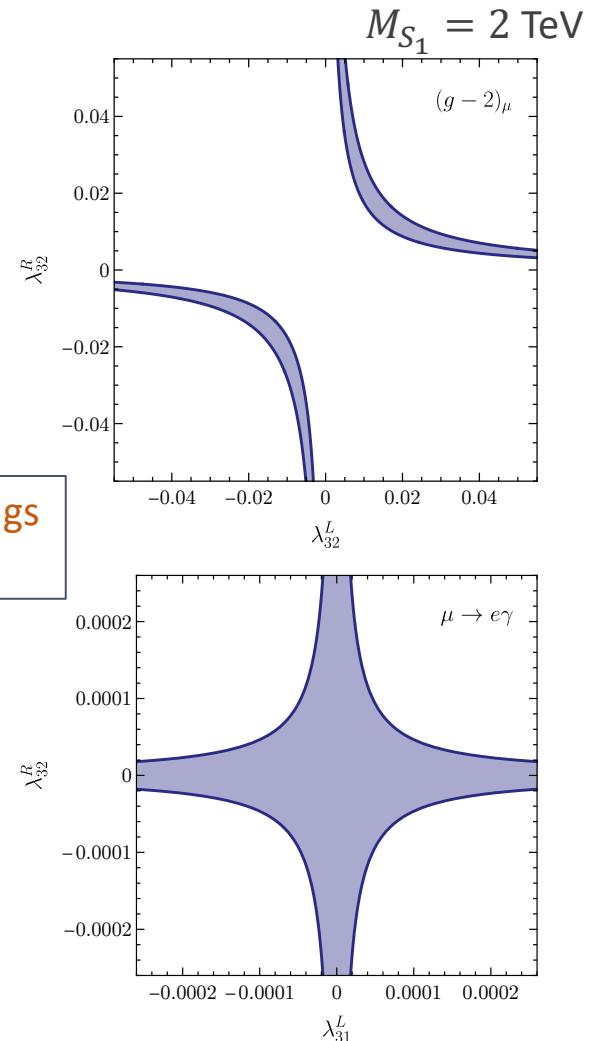
Most sensitive probes: $\mu \rightarrow e\gamma$ and $(g-2)_\mu$

$$\mathcal{B}(\mu^+ \rightarrow e^+ \gamma) = \frac{m_\mu^3 v^2}{8\pi \Gamma_\mu} \frac{\left| [\mathcal{C}'_{e\gamma}]_{12} \right|^2 + \left| [\mathcal{C}'_{e\gamma}]_{21} \right|^2}{\Lambda^4} < 4.2 \times 10^{-13} \text{ (90% CL),}$$

$$\begin{aligned} \Delta a_\mu &= a_\mu^{\text{exp}} - a_\mu^{\text{SM}} = -\frac{4m_\mu}{e} \frac{v}{\sqrt{2}} \frac{\text{Re}}{[\mathcal{C}'_{e\gamma}]_{22} \Lambda^2} \\ &= (251 \pm 59) \times 10^{-11} \end{aligned}$$

$$\begin{aligned} \left| \frac{[\mathcal{C}'_{e\gamma}]_{12(21)}}{\Lambda^2} \right| &\lesssim 2.1 \times 10^{-10} \text{ TeV}^{-2}, \\ \frac{\text{Re}[\mathcal{C}'_{e\gamma}]_{22}}{\Lambda^2} &\simeq -1.0 \times 10^{-5} \text{ TeV}^{-2}. \end{aligned}$$

Back to the couplings of the UV model



Another model with leptoquarks

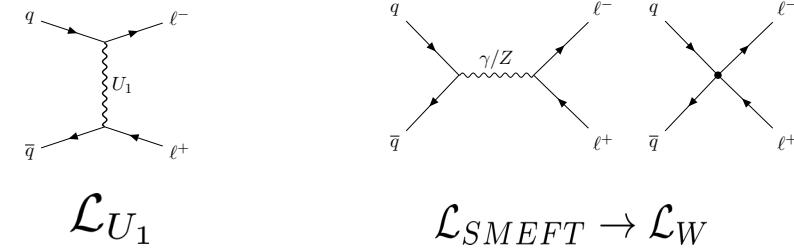
Connecting measurements at far apart scales

Model with one heavy vector (leptoquark) U_1

$$\mathcal{L}_{U_1} = \mathcal{L}_{SM} - \frac{1}{2} U_{\mu\nu}^\dagger U^{\mu\nu} + M_U^2 U_\mu^\dagger U^\mu + (U_\mu J^\mu + \text{h.c.}) \quad \text{where} \quad J^\mu = \frac{g_U}{\sqrt{2}} [\beta_{pr}^L (\bar{q}_p \gamma^\mu \ell_r) + \beta_{pr}^R (\bar{d}_p \gamma^\mu e_r)]$$

The tree level matching project on SMEFT 4-fermion operators

$$\begin{aligned} \mathcal{L}_W = \mathcal{L}_{SM} - \frac{g_U^2}{2M_U^2} & \left\{ \frac{1}{2} \beta_{pr}^L \beta_{st}^{L*} \left([Q_{lq}^{(1)}]_{trps} + [Q_{lq}^{(3)}]_{trps} \right) \right. \\ & \left. + \beta_{pr}^R \beta_{st}^{R*} [Q_{ed}]_{trps} - (2\beta_{pr}^R \beta_{st}^{L*} [Q_{ledq}]_{trps} + \text{h.c.}) \right\} \end{aligned}$$



affects Drell-Yan production: $pp \rightarrow \ell^+ \ell^-$
In particular tail of $m_{\ell\ell}$ distribution (LHC)

These same operators contribute also to low-energy processes, such as $b \rightarrow c \ell \nu$ decays entering the R_D, R_{D^*} ratios

$$R_{D^{(*)}} = \frac{\mathcal{B}(B \rightarrow D^{(*)} \tau \nu_\tau)}{\mathcal{B}(B \rightarrow D^{(*)} \ell \nu_\ell)}$$

$$\begin{aligned} R_D &= 0.356 \pm 0.029, & R_D^{\text{SM}} &= 0.298(4) & [\text{HFLAV}] \\ R_{D^*} &= 0.284 \pm 0.013, & R_{D^*}^{\text{SM}} &= 0.254(5) \end{aligned}$$

Another model with leptoquarks, cont'd

Described by the LEFT Lagrangian

$$\mathcal{L}_{b \rightarrow c} = -\frac{4G_F}{\sqrt{2}} V_{23} \left[(1 + \mathcal{C}_{LL}^c) (\bar{c}_L \gamma^\mu b_L) (\bar{\tau}_L \gamma_\mu \nu_L) - 2 \mathcal{C}_{LR}^c (\bar{c}_L b_R) (\bar{\tau}_R \nu_L) \right]$$

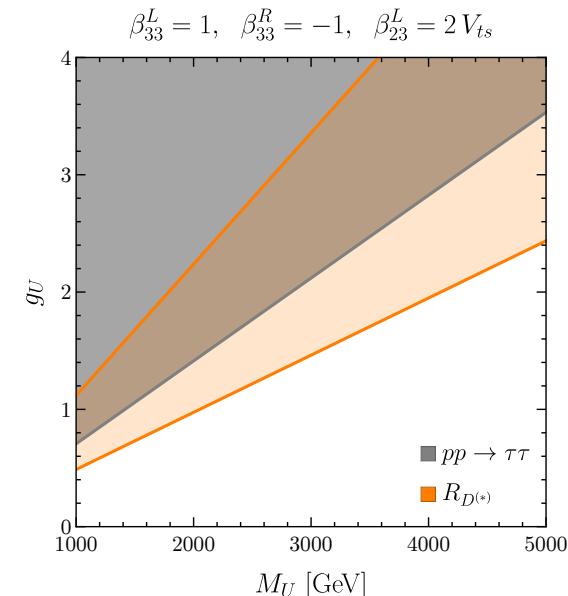
SMEFT to LEFT
matching

$$\mathcal{C}_{LL}^c = -\frac{1}{\sqrt{2}G_F} \frac{1}{M_U^2} \sum_{k=1}^3 \frac{[C_{lq}^{(3)}]_{33k3} V_{2k}}{V_{23}},$$
$$\mathcal{C}_{LR}^c = \frac{1}{4\sqrt{2}G_F} \frac{1}{M_U^2} \sum_{k=1}^3 \frac{[C_{ledq}^*]_{333k} V_{2k}}{V_{23}},$$

After running in the LEFT+SMEFT $\mu_b \rightarrow \mu_m$ ($\mu_m \sim 1 \text{ TeV}$) perform combined fit with DY measurements of $m_{\ell\ell}$ distribution tail

In combination only a fraction of the parameter space is viable

SMEFT enables complementarity of low- and high-energy measurements



Conclusions

- The SM effective field theory can be a **powerful tool to explore the TeV scale** whose knowledge is crucial and still not complete.
- Effects of new physics can then be constrained using the **broad spectrum of precision measurements available from EW, Higgs, top, flavor physics and more.**
- The **SMEFT (\rightarrow LEFT) framework** can be used to connect unknown physics at the UV scale (> 1 TeV) to the EW scale and below within a **systematic framework that allows some model independence.**
- With **increasing precision** in both theory and experiments, constraints **could start to show intriguing patterns and guide future explorations.**
- **In the presence of anomalies**, the SMEFT framework can connect them to a much broader phenomenology and offer a unique framework to their interpretation.

Some general references + refs. therein

- **General principles and broad spectrum of applications**
 - A. V. Manohar, *Effective Field Theories*, e-Print: hep-ph/9606222
 - I. Z. Rothstein, *TASI lectures on Effective Field Theories*, e-Print: hep-ph/0308266
 - D. Kaplan, *Five Lectures on effective field theories*, e-Print: nucl-th/0510023
 - M. Neubert, *Renormalization theory and effective field theories*, e-Print: hep-ph/1901.06573
 - L. Silvestrini, *Effective Theories for Quark Flavour Physics*, e-Print: hep-ph/ 1905.00798
- **SMEFT**
 - G. Isidori and D. Wyler, *The Standard Model Effective Field Theory at work*, arXiv:2303.16922
 - A. Falkowski, *Lectures on SMEFT*, Eur.Phys. C 83 (2023) 7, 656
 - I. Brivio and M. Trott, *The Standard Model as an Effective Field Theory*, arXiv:1706.08945

THANK YOU!
To the organizers and
all the participants

