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A big year for QCD

QCD was developed and defined
over a brief period from 1972 - 73

The asymptotic freedom of strong interactions
was discovered in 1973 by D. Gross, F. Wilczek,
and D. Politzer — Nobel Prize in 2004

A paradigmatic QFT that can be calculated
from first principles — Lattice QCD
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Goals of QCD studies- 2023

Understanding strong interactions per se (i
 pQCD - parton dynamics in HE-collider events

n different regimes of energy, density, ...

See talk by Schwartz

* non-perturbative QCD — PDFs, hadronization, new states of matter, ...
 QCD phase transition — early-universe dynamics, ... | See talks by Grosse-Oetringhaus, Mohamty
* Global symmetries of QCD — flavor, spectroscopy, ...

e Strong CP problem — axions, ...

)

See talks by Petrov, Schune, Ozcelik, Kim,
Bianchi, Pepe, Karliner, Polyakov

* Understanding the impact of strong interactions on anything else

e Other sectors of the Standard Model

» SM masses and couplings

See talks by d’Enterria, Liao

» The least known of all: Higgs — EWSB

See talks by Miihlleitner, Liu, di Micco

* New physics searches — both direct and indirect

» SM backgrounds

» Precision EW physics — Global fits of the SM and beyond | See talk by Silvestrini




The (HL)-LHC and precision
phenomenology

* Percent level phenomenology as the opportunity to study some of the core questions of
particle physics and uncover new physics. The physics potential of the LHC greatly depends
on enabling and successfully executing a broad precision phenomenology program.



Living the LHC era - Precision phenomenology

- ATLAS, 2212.09379

Universal Luminosity CMS, 2104.01927
N . . Both about 1%
limitations | Energy resolution ATLAS, 1703.09665
| (particles, jets) CMS, 1607.03663 )
(™ LHC/HL-LHC Plan HiLum Y

20 -fold increase in statistics
by the end of HL-LHC

lllllllllll o - LIV inetalation
7 TeV ﬂ Bution colimators irder

Statistical limitations will be overcome
i, S e e for a very large number of observables
— | ,

Focus on systematics!

Theoretical systematics could become the main limitation




Establishing the scalar sector of the SM and probing Ayp
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physics may not be a simple rescaling of SM interactions



SM global fits: solving the M,, puzzle
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Electroweak Fit (J. Haller et al.)
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Electroweak Fit (J. de Blas et al.)
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Mass measured by fitting template distributions
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. of transverse momentum and mass
| panl Template fitting is acceptable if theory
describes data with high accuracy
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. C. Hays, ICHEP 2022
How to achieve that?



QCD for percent-level
phenomenology

* A realm where mathematical progress and phenomenological studies and intuition are
strongly intertwined and have brought so much progress, paving the way to tackling future
challenges.



A very challenging endeavor

N

Search
strategies

Choice of
observables

QCD at 1% accuracy

N2LO and N3LO QCD infrastructure representative
calculations for these calculations uncertainty estimates

all-round standards

for accuracy control

Snowmass Report of QCD
Topical Groups, 2209.14872

* Parton-shower event generators
* Adapting theoretical tools to
experimental analyses

* Well-defined standards for
theoretical systematics
* Statistical models for data analysis
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QCD predictions: N*LO state of the art

most procs. known
QCD fixed-order as of 2022 (some w. public code)

some procs. known

major / no public code
some inputs known
progress

N3LO

Still a good summary for 2023,
with much progress in
red-circled boxes

(no full calen)
weo (B B B9 D

QCD order

P 252 293 24 295

Major challenges and progress:

NLO . . . . .D * Multiloop scattering amplitudes

* Real emission — IR subtraction

LO . . . . . . * All-order resummations in specific

regions of phase space
split. 931 * Predictions for fiducial regions

multiplicity >
From G. Salam, ICHEP 2022 (slightly modified)



Higgs production via gg fusion at N3LO

S ECTITTrITTITTrIREr l A strong case to demonstrate the need for higher-order QCD
S R N R R~
| | | o * The leading Higgs production mode
N * A benchmark test of QCD, including H+j production

* An excellent testing ground to probe theoretical accuracy
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... crucial to map residual uncertainties

e —— — —— — : Dulat, Lazopoulos, Mistlberger
12 k : LHC @ 13 TeV 1802.00827 (iHixis)
10 .
L S(theory) = Tyogy  (19%%)  d(scale)
s TN e ’ + 40.56pb (£1.16%) O(PDF-TH)
f IO — : ++0.49pb  (£1.00%)  S(EWK)
R SEW ] +  +£0.41pb  (£0.85%)  6(t,b,c)
i \ S(PDF-TH) + £0.49pb (£1.00%) d(1/my)
2 ] _ 42.08pb (+4.28%)
i S(scale) ] T —3.16pb —6.5% )
ok, . 0(PDF) = 40.89pb (£1.85%),
0 20 40 60 80 100 +1.25pb +92.59%
Collider Energy / TeV (a5> - —1.26pb (—2.62%)

Future challenges:

Uncertainty removed by calculation
of exact NNLO m; dependence

» N3LO PDF! — §(PDF-TH)
e Light-quark mass effects — d(b,c)

Reduced uncertainty to 0.26% by
calculation of NLO mixed QCD+EW

e More EW corrections

. o Czakon, Harlander, Klappert,
* Large logs resummation (fiducial)?

_ _ Becchetti, Bonciani, Del Duca, Hirschi,
Nieggetied, 2105.04436

Moriello, Schweitzer, 2010.09451

4-loop splitting functions (low moments) — Moch, Ruijl, Ueda, Vermaseren, Vogt, 2111.15561
DY@N3LO QCD — Duhr, Dulat, Mistlberger, 2001.07717, 2007.13313



DY at N3LO — input to PDF fits and M\, measurement

LHC 13T
PDIS4L3;-ISY5 1 K—Factor W~
PP ik X(—Iin 0—;1)0 NLO = NNLO = N3LO LHC 13TeV NLO
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Duhr, Dulat, Mistlberger, 2001.07717 K —Factor W*
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cent.=Q

e Scale dependence: non-uniform behavior in all Q-regions

e Important input for PDFs (not yet included)

e Region around Q~My,: reconsider how to estimate
theoretical uncertainty from scale variation

400 600 800 1000 1200 1400 1600 1800

200
Q[GeV]
Recall from before: need 0.1% accuracy in template Duhr, Dulat, MistIberger, 2007.13313

distributions in order to achieve AM\,~10 MeV




DY at N3LO — dedicated PDF study
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Overall consistency
among different sets

Large variation
in error bands

Systematics introduced by
choosing different sets can
be substantial

Different patterns observed in CC vs NC cannot be ignored for precision
measurements, since the introduced bias can be sizable at percent level.




DY at N3LO+N3LL — differential

Consider different observable?
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uncertainties below percent level! feasible




VH at N3LO, first complete
calculation

Same color structure as DY, same characteristic behavior, same lesson learnt in assessing

theoretical uncertainties

pp = ZH + X | PDF4LHC15 nnlo-me
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NNLO for 2—3 processes

Chawdry, Czakon, Mitov, Poncelet; Kallweit, Sotnikov, Wiesemann; Badger, Gerhmann, Marcoli, Moodie;

* Most recently first NNLO results for multi-scale processes: bbW, ttW, ttH

(1 massive final-state /

particle (b massless) 3 massive final-state
particles
. . Hartanto, Poncelet, Popescu, Zoia
Major impact on LHC / / /
J P 2205.01687 Buonocore, Devoto, Grazzini, Kallweit,
phenomenology Mazzitelli, Rotoli, Savoini, 2306.16311

Catani, Devoto, Grazzini, Kallweit,
Mazzitelli, Savoini, 2210.07846

Major bottle neck: 2-loop 5-point amplitudes
Evaluated in ttW, ttH calculation by soft-W/H approximation
Several groups working at providing exact 2-loop amplitudes




Buonocore et al., 2306.16311

ttW and ttH at NNLO e

700f it|
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NLO: push the multiplicity challenge

Beyond on-shell production to match fiducial measurements

10'35‘ Ho=Hr/3 NS otfshell
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Q? 100 E o | ' | ' | - - - - E
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r ] U . E j o . o
[ —— 510 N match experimental fiducial cuts
wee L L L E 10-3 | = i and estimate theoretical systematic
<« T T T T T T T T T T T E — %
E 1.6 - = % 10—4 L :_ :
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Kraus, Worek, 2005.09427 é 1.1 = dx = dx dx
1
[«

. . 0 | 160 | 260 | 360 | 460 | 560 | 600 dA dO_NLO dO_NLO
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Kraus, Nasufi, LR, Worek, 2109.15181 dX dX adxX



PDF — first approximate N3LO sets aN°LO — MSHT20aN"LO

McGowan, Cridge, Harland-

o (pb)

Gluon Fusion: gg— H (p=mpg/2) s Vector Boson Fusion: g — H (1 =Q?) Lang, Thorne, 2207.04739
50 A i aN®*LO oypy NLO PDFs
; I S $ NNLO PDFs
3 .. - -1 . .
' 1 R - 431 NLOov B L0k )~ EpEs « Based on N3LO approximation
45 - ——t—{- $ aN’LO H/ ! PDFs _
t —F- - to structure functions and
20, ’ ’ DGLAP evolution
18; 4.1 1T . .
b b * Making use of all available
351 ' 4 .
Light: PDF + Scale. uncertainty 404 ! & b knOWIedge to ConStraIn PDF
0 Darks PDI mpcertinty parametrization, including
3.9 both exact, resummed, and
Light: PDF + Scale uncertainty o .
25 e pmy aNPLO o Dark: PDF uncertainty approximate estimates of
NLO NNLO Mo > Rio NNLO NLo N3LO results
o accuracy o accuracy

* Including PDF uncertainty from
» Gluon fusion to H: the increase in the cross section prediction at N3LO is missing higher-orders (MHOU) as
compensated by the N3LO PDF, suggesting a cancellation between terms in the theoretical uncertainty in the fit
PDF and cross section theory at N3LO —» matching orders matters!

» Vector Boson Fusion: no relevant change in going from N2LO to N3LO PDF,
due to different partonic channel involved.



Parton-shower event generators

Its time for better Parton Showers! Slderom 6. Salars
Drell-Yan (y/Z) & Higgs production at hadron colliders Crucial ingredient to reproduce
LO NLO NNLO[....coeveiernnans ] N3LO the Complexity of collider events

DGLAP splitting functions

LO  NLO NNLO [parts of N3LO] Often unknown or with poor formal
transverse-momentum resummation (DY&Higgs) accuracy (built in approx., tunings, etc.)
LL  NLL[......] NNLL[...] N3LL

parton showers (many of today’s widely-used showers only LL @leading-colour)

LL [parts of NLL......ccooeiiiiiiciir v s r e e e ]

fixed-order matching of parton showers
LO NLO NNLO [....... ] [N3LO]

1970 1980 1990 2000 2010 2020

. Hadronization

. Fixed-order calculations
. Parton shower

From S. Ferrario Ravasio, RADCOR 2023

Hard
)) Scattering
Q ~ 100GeV|

» Standard PS are Leading Logarithmic (LL) = becoming a limitation

» Several groups aiming for NLL hadron-collider PS
Nagy&Soper, PanScales, Holguin- Forshaw-Platzer, Herren-Hoche-Krauss- Reichelt




More challenges: non-perturbative effects O((Agcp/Q)P)

o_

Estimate of “p” for all relevant processes crucial to LHC precision program

A few tens GeV < Q < a few hundreds GeV — (Ag¢p/Q)P~(0.01)P—(0.001)?

Perturbative predictions at percent level will have to be supplemented with non-
perturbative effects if p = 1 for a particular process or observable.

No general theory. Direct calculations have shown that there are no linear non-pert

power corrections in: é\—/
3 3 3
e e

» Z transverse-momentum distributions T
Ferrario Ravasio, Limatola, Nason, 2011.14114 \ é/

» Observables that are inclusive with respect to QCD radiation
Caola, Ferrario Ravasio, Limatola, Melnikov, Nason, 2108.08897, same+QOzcelik 2204.02247




Summary and Outlook

» QCD: a mature theory that still offers plenty of conceptual challenges
» In this talk we have mainly focused on aspects of QCD predictions for collider physics

» Understanding the multiple components of QCD predictions becomes crucial to interpret precision
measurements as well as direct searches of new physics. Of course, QCD+EW corrections will be part
of the balance (not covered in this talk).

» Now accessible high-precision measurements pose a serious challenge to theoretical predictions

» Theoretical development during the last few years have deeply changed traditional approaches to
QCD calculations and given results that were unimaginable only a decade ago, giving us confidence
that challenges can be met.

» Interpreting the complexity of LHC events at with HL-LHC precision will be challenging and will
require diversity of approaches.



