Welcome to Math Methods!

Seth Quackenbush

Course Purpose

- Goal: mastery of basics of undergraduate math curriculum to prepare for physics grad courses
- Ideally also cover advanced math topics of interest for physicists

Course Philosophy

- Math course for physicists? (Physicist vs. Mathematician)
- Calculations pretty straightforward compared to physics puzzles—try together while we're learning

Topics

- Small, interactive class: we will go at a challenging pace, but nobody left behind
- Speed and topics covered depend on what you want and need
 - questionnaire

Grade Breakdown

- 15%: In class (participation, possible quizzes)
- 60%: Homework
- 10%: Midterm
- 15%: Final

Official Grade Boundaries

Unofficial Grade Boundaries

- A: Generally mastered material
- B: Some areas need improvement
- C: You blew something off

Homework Policy

- Weekly, due at beginning of class
- Groups allowed, work is your own
- No use of computer (Maple, Mathematica, etc.) unless specified

Today (?):

- Polynomial equations & roots
- Trigonometric identities

Polynomial Equations

- Frequently-encountered type of function: polynomial, a sum of powers of the dependent variable with coefficients
 - Straightforward to compute
 - Appears as limits of more general functions
 - Max power of dependent variable: degree of polynomial

Roots of Polynomials

- Often, want to invert polynomial equation
 - Ex: what time is particle at position x, given x(t)?
 - Write equation as y(x) = 0, solutions known as roots
 - Fundamental theorem of algebra: can always write polynomial as product of roots
 - Some roots may be complex, repeated

Class ex:

• The roots of a polynomial are t=1,3,-1. Find x(t) in the standard form.

Finding Roots

- Straightforward methods for solving n=1 (linear) and n=2 (quadratic)
- More complicated general solutions for n=3 (cubic) and n=4 (quartic)
- Lots of indirect ways of finding how many real roots, properties

Numbers of Roots

- Number of complex roots always same as degree of polynomial
 - Some may be repeated
 - Not all are real

Tricks for Numbers of Real Roots

- Degree is even: limits at ±∞ same, have to cross axis even number of times
- Degree is odd: limits at ±∞ opposite, have to cross axis odd number of times

Where is a root?

- Try setting dependent variable to zero, ±∞, look at whether result is positive or negative
 - A root must exist if crossing from negative ↔ positive

More Tricks

- Set x=0: it's a root if no constant term
- Set x=1: it's a root if coefficients all add to zero
- Set x=-1: it's a root if coefficients add to zero with sign flips

I Found a Root! Now What?

• Might be able to get is multiplicity: try taking derivatives

• Can start to factor polynomial

Example

• Find the roots of $f(x) = 2x^3 + 3x^2 - 3x - 2$

Trigonometric Functions

• Basic functions: sin, cos

"Derived" functions: tan x = sin x/cos x
cot x = 1/tan x, sec x = 1/cos x, csc x = 1/sin x

• Reflection properties: sin(-x) = -sinx, cos(-x) = cos x

Trig Identities

• As a practical matter, can always find a table easily:

Co-function Identities

 $\sin \theta = \cos (\pi/2 - \theta)$ $\sec \theta = \csc (\pi/2 - \theta)$ $\tan \theta = \cot (\pi/2 - \theta)$

Negative Angle Identities

$sin(-\theta) =$	- sin θ	$\csc(-\theta) =$	- csc θ
$\cos(-\theta) =$	cos θ	$\sec(-\theta) =$	sec 0
$tan(-\theta) =$	- tan θ	$\cot(-\theta) =$	- cot θ

Addition and Subtraction Identities

sin (A + B)	= sin A cos	B + cos A sin B
-------------	-------------	-----------------

 $\cos (A + B) = \cos A \cos B - \sin A \sin B$

 $\tan (A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$

- $\sin(A-B) = \sin A \cos B \cos A \sin B$
- $\cos (A B) = \cos A \cos B + \sin A \sin B$
- $\tan (A B) = \frac{\tan A \tan B}{1 + \tan A \tan B}$

Double-Angle Identities

- $\sin 2 \theta = 2 \sin \theta \cos \theta$
- $\cos 2\theta = \cos^2 \theta \sin^2 \theta$
 - $= 2\cos^2 \theta 1$
 - = $1 2\sin^2\theta$

 $\tan 2\theta = \frac{2\tan\theta}{1-\tan^2\theta}$

Product Identities

 $sinAcosB = \frac{1}{2} \left(sin (A + B) + sin (A - B) \right)$ $cosAsinB = \frac{1}{2} \left(sin (A + B) - sin (A - B) \right)$ $cosAcosB = \frac{1}{2} \left(cos (A + B) + cos (A - B) \right)$ $sinAsinB = \frac{1}{2} \left(cos (A - B) - cos (A + B) \right)$

Supplement Angle Identities

$\sin(\pi - \theta) = \sin \theta$	$\csc(\pi - \theta) = \csc \theta$
$\cos(\pi - \theta) = -\cos \theta$	$\sec(\pi - \theta) = -\sec \theta$
$\tan(\pi - \theta) = -\tan \theta$	$\cot(\pi - \theta) = -\cot \theta$

 $\begin{aligned} &\sin\left(\pi+\theta\right) = -\sin\theta & \csc\left(\pi+\theta\right) = -\csc\theta \\ &\cos\left(\pi+\theta\right) = -\cos\theta & \sec\left(\pi+\theta\right) = -\sec\theta \\ &\tan\left(\pi+\theta\right) = \tan\theta & \cot\left(\pi+\theta\right) = \cot\theta \end{aligned}$

Quotient Identities

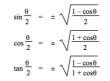
 $\begin{aligned} \tan \theta &= \frac{\sin \theta}{\cos \theta} & \cot \theta &= \frac{\cos \theta}{\sin \theta} = \frac{1}{\tan \theta} \\ \sec \theta &= \frac{1}{\cos \theta} & \csc \theta &= \frac{1}{\sin \theta} \end{aligned}$

Pythagorean Identities

 $\sin^2 \theta + \cos^2 \theta = 1$ $\tan^2 \theta + 1 = \sec^2 \theta$

 $\cot^2 \theta + 1 = \csc^2 \theta$

Half-Angle Identities



Sum Identities

sinA + sinB	=	$2\sin\left(\frac{A+B}{2}\right)$	$\left(\frac{A-B}{2}\right)$)
			$)_{sin}(\frac{A-B}{2})$	
$\cos A + \cos B$	=	$2\cos\left(\frac{A+B}{2}\right)$	$\cos(\frac{A-B}{2})$	
$\cos A - \cos B$	=	$-2\sin\left(\frac{A+B}{2}\right)$	$\sin\left(\frac{A-B}{2}\right)$)

Important Identities

• Most important: $\cos^2 \theta + \sin^2 \theta = 1$

• Very useful: angle addition

 $\cos(A+B) = \cos A \cos B - \sin A \sin B$ $\sin(A+B) = \sin A \cos B + \cos A \sin B$