Last Time

- Minimization problems
- Vector functions

Today

- Differential operators
 - divergence, curl, etc.
- Curvilinear coordinates

Vector Functions of Many Variables

- Last time we looked at how vector functions behave under derivatives
- We also defined an operator, the gradient, which took scalar functions of many variables to a vector function (of those variables)
- There are more operators we would like to define on vector functions of many variables

Vector Functions of Many Variables

- Most of the time, we are interested in functions that map a space to itself
 - Linear example: square matrices
 - Gradient takes a scalar function of many variables to a vector function of many variables
 - Such maps called **vector fields**
 - We could also have extra variables in the domain

Divergence

- Divergence operator is a mode of differentiation that takes vector fields to scalar functions
 - Notation suggests we are taking "dot product" of gradient operator with vector field

Interpretation of divergence: "spreading out" of field

• Find the divergence of $x^2 y^2 \hat{i} + y^2 z^2 \hat{j} + x^2 z^2 \hat{k}$

Laplacian

- Important combination operator: Laplacian
 - Gradient followed by divergence (takes scalar function back to scalar function)

$$\nabla^2 f = \nabla \cdot (\nabla f)$$

Curl

- Curl is a derivative operator that takes vector fields to vector fields
 - Like we are taking "cross product" of gradient operator with field
 - 3D only!

• Find curl of $x^2 y^2 z^2 \hat{i} + y^2 z^2 \hat{j} + x^2 z^2 \hat{k}$

Sum/Product Identities

• Gradient, divergence, curl distribute as you would think over sums

• Product rule works as you think as long as there is a scalar function

• Other identities more complicated

Combinations of Operators

- Already saw Laplacian
- Two other combinations are zero:

 $\nabla \times \nabla f = 0$ $\nabla \cdot (\nabla \times \vec{f}) = 0$

Rest more complicated

Curvilinear Coordinates

- Sometimes easier to analyze situations with symmetry with coordinates other than Cartesian (x,y,z)
 - We already saw this with some integrals
- If the transformation to new coordinates is non-linear, even basis vectors are functions
 - We usually make the coordinates independent, though, so they are orthogonal

Cylindrical Coordinates

• New coordinates are 2D polar and z axis $\rho = \sqrt{x^2 + y^2}$ $\phi = \tan^{-1}(y/x)$

$$Z = Z$$

- Unit vectors:
 - Away from cylinder axis $\hat{e}_{\rho} = \cos \phi \hat{i} + \sin \phi \hat{j}$
 - Around cylinder $\hat{e}_{\phi} = -\sin\phi \hat{i} + \cos\phi \hat{j}$
 - Along axis $\hat{e}_z = \hat{k}$
- Volume element: $dx dy dz = \rho d \rho d \phi dz$

Cylindrical Derivatives

 Because basis vectors not constant, derivative operators look different in cylindrical coordinates

$$\nabla f = \frac{\partial f}{\partial \rho} \hat{e}_{\rho} + \frac{1}{\rho} \frac{\partial f}{\partial \phi} \hat{e}_{\phi} + \frac{\partial f}{\partial z} \hat{e}_{z}$$

$$\nabla \cdot \vec{f} = \frac{1}{\rho} \frac{\partial}{\partial \rho} (\rho f_{\rho}) + \frac{1}{\rho} \frac{\partial f_{\phi}}{\partial \phi} + \frac{\partial f}{\partial z}$$

$$\nabla \times \vec{f} = \frac{1}{\rho} \begin{vmatrix} \hat{e}_{\rho} & \rho \hat{e}_{\phi} & \hat{e}_{z} \\ \frac{\partial}{\partial \rho} & \frac{\partial}{\partial \phi} & \frac{\partial}{\partial z} \\ f_{\rho} & \rho f_{\phi} & f_{z} \end{vmatrix}$$

- Find in cartesian and cylindrical coordinates, and compare, $\nabla^2 \rho$

Spherical Coordinates

• New coordinates:

$$r = \sqrt{x^2 + y^2 + z^2}$$

$$\theta = \cos^{-1}(z/r)$$

$$\phi = \tan^{-1}(y/x)$$

- Unit vectors:
 - Away from origin $\hat{e}_r = \sin \theta \cos \phi \hat{i} + \sin \theta \sin \phi \hat{j} + \cos \theta \hat{k}$
 - N/S on globe surface $\hat{e}_{\theta} = \cos \theta \cos \phi \hat{i} + \cos \theta \sin \phi \hat{j} \sin \theta \hat{k}$
 - E/W on globe surface $\hat{e}_{\phi} = -\sin\phi\hat{i} + \cos\phi\hat{j}$
- Volume element: $dx dy dz = r^2 \sin \theta dr d \theta d \phi$

Spherical Derivatives

$$\nabla f = \frac{\partial f}{\partial r} \hat{e}_r + \frac{1}{r} \frac{\partial f}{\partial \theta} \hat{e}_\theta + \frac{1}{r \sin \theta} \frac{\partial f}{\partial \phi} \hat{e}_\phi$$
$$\nabla \cdot \vec{f} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 f_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta f_\theta) + \frac{1}{r \sin \theta} \frac{\partial f_\phi}{\partial \phi}$$
$$\nabla \times \vec{f} = \frac{1}{r^2 \sin \theta} \begin{vmatrix} \hat{e}_r & r \hat{e}_\theta & r \sin \theta \hat{e}_\phi \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \phi} \\ f_r & r f_\theta & r \sin \theta f_\phi \end{vmatrix}$$

• Find $\nabla^2 r$ in cartesian and spherical coordinates.

Next Time

• Vector integrals and integral theorems