Last Time

- Adjoint
- Diagonalization of operators
- Fourier Transform

Today

• First-order differential equations

Differential Equations

 General problem: we want to find a function given some relation among it and its derivatives, dependent variables

$$f(x, x', x'', ..., t) = 0$$

 $x(t) = ?$

- Examples:
 - Force problems
 - Growth/evolution
 - Waves

For now: *ordinary* differential equations, one independent variable

First-Order Differential Equations

• Where to start: restrict problem to only first derivatives

$$f(x, x', t) = 0$$

 $x(t) = ?$

• Maximum derivative called order

Main Strategy: Integrate

- Rearrange into an equation where you can antidifferentiate both sides
 - Ex: given x'(t) = f(t)

$$-$$
 Ex: x'(t) = a x(t)

Class Ex

 An object, mass m, is falling through a fluid with resistive force kv. Find its velocity as a function of time, given initial velocity v₀.

General First-Order Solution

• Can broaden to general first-order equation with constant coefficients

$$\frac{dx}{dt} = a x + b$$
$$x = C e^{at} - \frac{b}{a}$$

Linear Equations

- Linear differential equations are ones where the operator equation L[x] = 0 is a linear operator
 - (repects linear rules for combining functions)
- Linear differential equations always have a solution
 - n independent solutions for order n, general solution a linear combination of them

General Linear First-Order Solution

• Use method of integrating factor on general equation dx

$$\frac{dx}{dt} = p(t)x + q(t)$$

 multiply both sides by helper function µ(t) so a change of function will produce constant coeff result

More General First-Order Equations

- Non-linear equations not guaranteed unique solutions
- Sometimes you can get lucky and solve by separating dependent and independent variables

Class Ex

• Find an implicit relation between x and t for

$$\frac{dx}{dt} = \frac{t^2}{1 - x^2}$$

Homogeneous* Equations

- *Homogeneous in the algebraic sense—ratio of polynomials of two variables with all same order $\frac{dx}{dt} = \frac{f(x,t)}{a(x,t)} = h(x/t)$
 - Homogeneous differential equations mean something else entirely later
 - To solve: divide both polynomials by tⁿ, now have differential equation in new variable, x/t

Class Ex

 Solve dx/dt = (3x²-xt)/(x²+t²) (you may stop at the integral)

Bernoulli Equation

• There's a trick to some simple non-linear equations of the form

$$\frac{dx}{dt} = p(t)x + q(t)x^n$$

- Make the substitution $u = x^{1-n}$
 - Now of the form

$$\frac{du}{dt} = (1-n)p(t)u + (1-n)q(t)$$

Next Time

- Some more non-linear techniques
- Linear second-order equations