Today

- Methods useful for inhomogeneous equations
 - Laplace transform
 - Variation of parameters
 - Green's functions
 - Variation of parameters/Green's functions requires knowing homogeneous solutions, Laplace does not

Laplace Transform

- Idea: convert ODE from original variable to another space where ODE looks simpler, solve there algebraically
- Laplace transform: "non-imaginary Fourier transform" $\bar{x}(s) = \int_0^\infty dt \, e^{-st} x(t)$

Class Ex

• Find the Laplace transform of f'(t) in terms of the transform of f(t).

Laplace Transform of Derivatives

• Generally, transform of nth derivative:

 $s^{n}\overline{x}(s)-s^{n-1}x(0)-s^{n-2}x'(0)-\dots$

- Transform very useful for initial value problems where given conditions are x(0), x'(0), etc.
- Most useful for constant-coefficient ODEs where transforms of derivatives are simple

Completing the Solution

- The Laplace transform of a constant coefficient ODE will become an algebraic equation in s
- We want the solution in the original space need inverse transform
- Computing inverse more difficult, unlike Fourier—requires math we haven't reviewed
- For now: create dictionary of common transforms, work backwards

Class Ex

• Find the Laplace transform of ekt.

Common Transforms

 Transforms are usually only defined in part of s space (s > 0 unless stated)

С	\rightarrow	c/s
ct^n	\rightarrow	$cn!/s^{n+1}$
sin <i>kt</i>	\rightarrow	$b/(s^2+k^2)$
cos kt	\rightarrow	$s/(s^2+k^2)$
e^{kt}	\rightarrow	1/(s-k), s>k
$t^n e^{kt}$	\rightarrow	$n!/(s-k)^{n+1}, s>k$
$e^{kt} \sin at$	\rightarrow	$a/((s-k)^2+a^2)$
$e^{kt}\cos at$	\rightarrow	$(s-k)/((s-k)^2+a^2)$
$\delta(t-t')$	\rightarrow	$e^{-st'}$

Example

• Solve the ODE $x''-3x'+2x=e^{-t}$ if x(0) = 0, x'(0) = 2 using the Laplace transform.

Variation of Parameters

- There is a more general method of getting particular solutions than guessing the form
- Assume form of particular solution is a combination of homogeneous solutions
 - 2nd order: $a(t)x''+...=f(t), x_p=k_1(t)x_1(t)+k_2(t)x_2(t)$
 - Get k to produce inhomogeneous piece
 - Choose $k_1'x_1 + k_2'x_2 = 0$, $k_1'x_1' + k_2'x_2' = f(t)/a(t)$
 - System of equations for k', integrate to get k and particular solution

Class Ex

• Solve x" + x = 1/sin t for the boundary conditions $x(0) = x(\pi/2) = 0$.

Green's Functions

- Goal: to solve all inhomogeneous for given differential equation, by finding "root" solution
- To solve L[x] = f(t), solve $L[G(t,t')] = \delta(t-t')$
 - Get x for f(t) by integrating G(t,t')f(t')

Properties of G

- Highest derivative of G (2nd for 2nd order) must produce delta function spike at t=t'
- So next-highest (1st for 2nd order) must have a discontinuity at t=t' (produces step function)
 - Write G in two pieces: t' < t, t' > t
 - 2^{nd} order: enforce dG/dt(t,t+ ϵ) dG/dt(t,t- ϵ) = 1
- Want lower derivatives to be continuous
 - Enforce $G(t,t+\varepsilon)=G(t,t-\varepsilon)$

Example

• Solve x" + x = $\delta(t-t)$ for the boundary conditions x(0) = x($\pi/2$) = 0.

Example

 Re-solve x" + x = 1/sin t using the Green's function found earlier.