Last Time

• Inhomogeneous methods

Today

Series solutions

Problems with Methods so Far

- Most methods we've discussed require we "undo" derivatives somehow
 - solutions better be elementary functions or integrals involving them
 - requires tricks or simple enough equations (constant coefficients)
- What if solution isn't easily related to elementary functions?

Try Series

- Perhaps the solution isn't an elementary function, but does have a Taylor series expansion—can we find the series directly?
- Try substituting in series expansion for x(t), x'(t), etc. everywhere, get series equation

$$-$$
 Ex: x' = x

• For series to be equal, coefficients of each power must be equal

Recurrence Relations

- Generically, one always ends up with an equation relating $c_i, c_{i-1}, \dots c_{i-n}$ for order n
- Called recurrence relation
- Can solve to find pattern of coefficients, get solution series

Class Ex

 Find a recurrence relation for x" + x = 0, about t=0.

More on Recurrence Relations

- Generally a coefficient depends on more than one previous one
- May be easier to build series by substituting in initial conditions (you know x(0), x'(0), etc.)
- Can get arbitrary solution by starting series with arbitrary constants: use first n terms

Will Series Work?

- Series will exist and converge near expansion point as long as ODE non-singular around expansion point
- Ex: for general second order homogeneous x''+p(t)x'+q(t)x=0
 p, q must have Taylor series expansions

Regular Singular Points

- Many ODEs have p, q that are not analytic
 - Often because x" has variable coefficient
- Can fix as long as p, q not too bad
- Assuming t=0 is bad expansion point:
 - Rewite p = u/t, $q = v/t^2$
 - if u, v are analytic (series expansions), proceed with new series for x with "extra" power

Class Ex

 Find the series solutions about t=0 of 4t x" + 2 x' + x = 0.

Next Time

• Hermitian operators and Sturm-Liouville theory