Last Time

- 1st Order PDEs
- Characteristics

Today

- Inhomogeneous PDEs
- Higher-order behavior
- Separation of Variables

Inhomogeneous Equations

• Like ODEs, solve homogeneous first, add particular solution that matches the RHS

Class Ex

• Find the general solution to $\partial_t u - c \partial_x u = x$

Higher-order

- The nature of reasonable boundary conditions depends crucially on the form of the PDE
- We'll take a look at some second-order and note allowable boundary conditions that allow unique solutions

Wave Equation

- Wave equation: $\partial_t^2 u c^2 \nabla^2 u = 0$
- 1D version (in space, really 2D total): $\partial_t^2 u c^2 \partial_x^2 u = 0$
- Solutions by factorization
- Two independent function solutions
 - 2nd order generally have two independent solutions, can build with linear combination
- Characteristics intersect—function can only be determined from initial conditions along a nice line

Laplace Equation

- Laplace Equation: $\nabla^2 u = 0$
- Similar solutions to wave equation, but "complex" factorization
- Solutions do not propagate along characteristics
- Appropriate boundary conditions more complicated

Diffusion/Heat Equation

- Missing 2nd derivative in time $\partial_t u = \kappa \partial_x^2 u$
- No characteristics
- Generally solutions only stable under propagation in one direction (past/future, not both)

Types of Boundary Conditions

- Cauchy: function defined on subspace, with normal derivative (if second order)
 - analog to initial conditions of ODEs
- Dirichlet: function defined on boundary enclosing solution space
- Neumann: function's normal derivative defined on boundary enclosing solution space

Classes of 2nd Order

 Nature of boundary conditions that produce good solutions dependent on how 2nd order equation would be "factorized"

$$(A\partial_{tt} + B\partial_{tx} + C\partial_{xx} + ...)u = 0$$

- B²-4AC > 0: real roots, elliptic
 - ex: Poisson
- B²-4AC = 0: repeated roots, parabolic
 - ex: heat
- B²-4AC < 0: complex roots, **hyperbolic**
 - ex: wave

Allowed 2nd Order BC

Class	BC with unique solution
hyperbolic	Cauchy, open region only
parabolic	Dirichlet/Neumann, open region, solution converges only in one direction
elliptic	Dirichlet/Neumann, closed boundary of region

Separation of Variables

- Not always easy/possible to analyze characteristics
- New strategy: guess a solution of a form where variables can always be separated
 - By itself, this will not be the general solution
 - Doesn't always work, but useful for linear PDEs

Separation Strategy

- Assume solution is a product of single-variable functions
- Insert into PDE
- Divide PDE by solution
- Result should be an equation with terms of only one variable
- Only possibility: every term is a constant
 - called separation constant(s)
 - Will need n-1 constants for n variables, will be relations between

Next Steps

- Every separated term is now an ODE containing the separation constant
- Solve using usual ODE methods
- Multiply solutions to get PDE solution

Example

• Find a separation solution to $\partial_t u = c \partial_x u$

Building Solutions

- We only got a single solution: one that matched the separation constant
- More general solutions can be built with a linear combination of these solutions for different separation constants
- The separation constants tie together the independent single-variable solutions
 - Play similar role to characteristic lines

Applying Boundary Conditions

- Separated solutions are ideal for boundary conditions that lie along variable axes
- In fact, if you successfully separated:
 - Remaining ODEs are eigenvalue equations
 - Part of boundary conditions will enforce specific (often integer) eigenvalues
 - If remaining ODEs are hermitian, solution space is complete, therefore PDE solution will exist in combination of separated solutions

Class Ex

 Solve the 3D quantum mechanical infinite square well, where the particle is confined to be in 0<x<a, 0<y<b, 0<z<c.

$$\frac{-\hbar^2}{2m}\nabla^2\Psi = i\hbar\frac{\partial\Psi}{\partial t}$$

Next Time

• Separations in non-Cartesian coordinates