
  

Last Time

● Separation of Variables



  

Today

● Separation examples in non-Cartesian 
coordinates



  

Other Coordinates

● The separation strategy is ideal when the boundary 
conditions are “separated” along a subset of the 
coordinates
– Guaranteed to get the solution in many situations due to 

completeness of ODE eigenvalue solutions
● Most important PDEs in physics involve the laplacian 

with possible time derivatives—nice 2nd order PDEs 
with constant coefficients

● However—boundary conditions and useful 
coordinate systems are often non-Cartesian



  

2D Laplacian

● 2D Laplacian:
● We could solve Laplace’s equation

easily by separation in Cartesian coordinates
● What if we want solution in polar? (Very 

needed if boundary is a circle!)
– Laplacian in polar:
– Separation still possible in these coordinates with 

a little extra work
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2D Laplace Polar ODE Solutions

● Angular solution still simple, but geometry 
provides implicit boundary condition: must be 
periodic in φ

● Radial ODE not obvious since non-constant 
coefficients, but we can try power series



  

Class Ex (Review?)

● Find the recurrence relation to for the ODE
ρ

2P ' '+ρP '−λ P=0



  

More on 2D Polar Laplace

● Radial ODE singular at zero, need to be 
careful near there

● Can eliminate half of radial solutions with 
“physical” boundary condition argument: 
solution should not blow up too badly at zero

● Different form of solution if λ=0 



  

Class Ex

● A drum of radius a has a fixed displacement 
along its rim perpendicular to the drum face 
that varies with angle:
Find the displacement for the entire drumskin 
surface.
– Hint: the drumskin is elastic, and obeys the 2D 

wave equation, or when fixed, the 2D Laplace 
equation

u(a ,ϕ)=ϵsin (ϕ+2sin 2ϕ)



  

Applying Boundary Conditions

● Observation: boundary/initial conditions will 
often “pick out” the allowed eigenvalues when 
doing separation of variables/eigenfunction 
expansion, determine rest of solution



  

3D Laplace, Spherical Coordinates

● Laplace’s equation, spherical polar:
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Class Ex

● Separate the 3D spherical polar Laplace 
equation, solving the φ equation and setting up 
the ODE in θ.



  

Associated Legendre Equation

● Associated Legendre Equation:

● Same as Legendre equation with m=0 (x=cosθ)
● Solutions: built from Legendre solutions

– (Tables of these available many places)
– Like Legendre polynomials, mutually orthogonal
– Solutions good at poles require |m| ≤ l, l integer
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Spherical Harmonics

● Combination of φ/θ solutions, normalized, called 
spherical harmonics

● Orthonormal, complete set of functions on angular 
space in spherical coordinates

● Any PDE with spherical symmetry separates this 
way to produce spherical harmonics

● Also easy to look up particular Yl
m
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The Radial Part

● Radial equation: r2R ' '+2r R '−λ R=0,λ=l(l+1)



  

The Radial Part

● Radial equation:

● Solution:

r2R ' '+2r R '−λ R=0,λ=l(l+1)

Rl(r )=C l r
l
+Dl r

−l−1



  

Class Ex

● An uncharged conducting sphere is placed in 
an initially uniform external electric field of 
magnitude E. Find the potential everywhere 
outside the sphere.
– Hints: 

● Laplace’s equation holds outside the sphere where there 
is no charge.

● Perfect conductors are equipotentials—can use as a 
boundary condition

● Behavior of field at infinity is a boundary condition



  

Next Time

● Other PDE examples?
● Green’s functions?
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