Motions in the Sky (Part I)

- 1. Practice Quiz
- 2. Introduction
- 3. Earth Spins Around Its Axis
- 4. Earth Revolves Around the Sun
- 5. Summary

Review

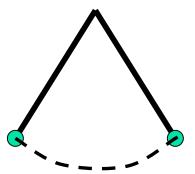
- Astronomy is the study of objects outside of the Earth's atmosphere
- This is a science class
- The scientific method always tests and retests hypotheses and develops new theories if old ones fail
- Powers of 10 are used for big and small numbers
- We are going to study lots of interesting stuff this semester

Wait a moment.

LOTS of Motion

- Earth Spins Around Its Axis
 - Once per ???
- Earth and Moon Revolve Around Each Other
 - Once per ???
- Earth Revolves Around the Sun
 - Once per ???
- Solar System is Revolving Around the Center of the Milky Way
- The Milky Way is Moving Through Space
- Whew, do you feel dizzy?

Earth Spins

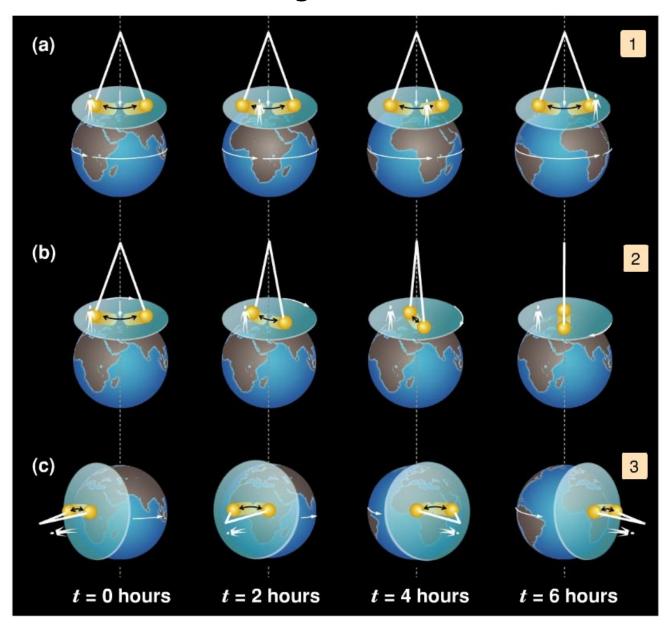

- The Earth spins around its axis once per day (24 hr)
- This axis runs through the Earth from the North Pole to the South Pole
- When viewed from above the North Pole, the Earth rotates counterclockwise.
- This spin causes the rising and setting of the Sun (and the Moon and the stars)
- This effects many of our weather patterns including hurricanes

North Celestial Pole

- The Earth revolves around an axis that runs from the <u>north celestial pole</u> to the <u>south celestial pole</u>
 - Currently, the north celestial pole points towards Polaris, otherwise known as the North Star
 - There is no corresponding "South Star"
 - The Earth tilt moves some so eventually the north celestial pole won't point towards Polaris

Foucault's Pendulum

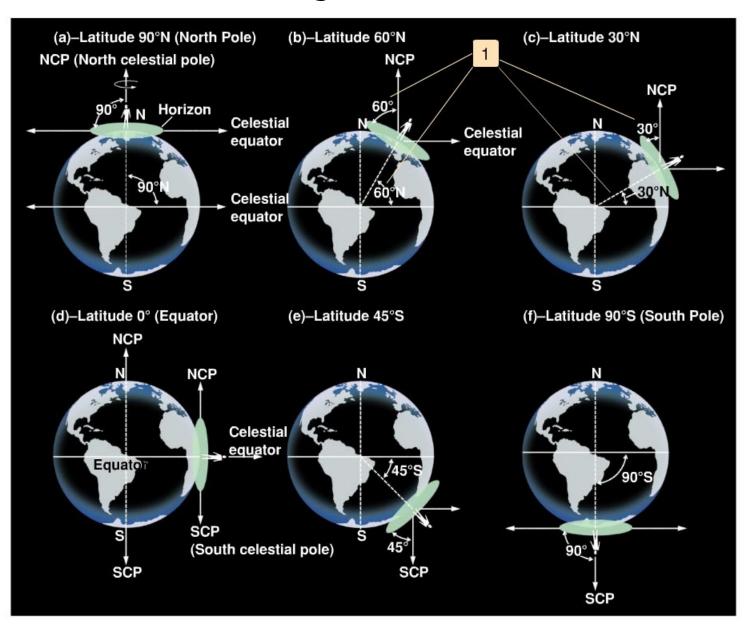
 A pendulum swings back and forth because of gravity and its mass



- Without friction and air resistance, it will do this forever
- In 1851, Jean-Bernard-Leon Foucault developed a test to demonstrate the Earth's rotation

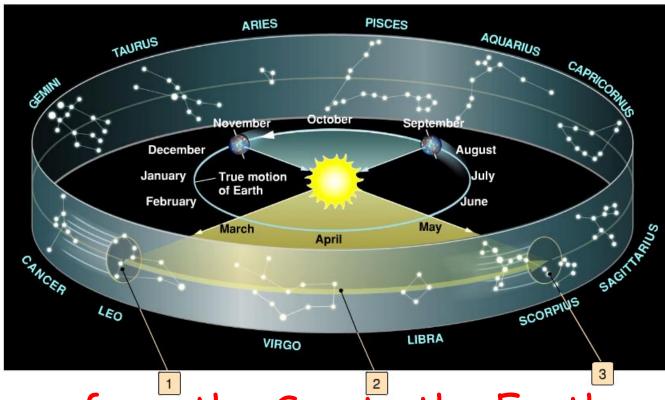
Foucault's Pendulum (cont)

- Imagine the pendulum is at the North Pole
- It will continue to swing back and forth in the same plane. However, the Earth will rotate underneath it.
- So to someone standing nearby the pendulum will appear to rotate, completing one revolution per day
- Now consider a pendulum at the equator which is swinging along the east-west line
- This pendulum will not rotate
- At latitudes in the middle, the pendulum will rotate with a period more than 24 hours


Figure 2.9

The Horizon

- We can only see half the sky at any given moment (the half above us)
 - The other half is blocked by the Earth
- If we are on the North or South Pole, we will always see the same half of the sky
 - It does rotate around itself
- If we are on the equator, we will see the whole sky once per day
- In between, we see part of the sky all day long and part of the sky only some of the day


Figure 2.4

The Earth Revolves Around the Sun

The Earth revolves around the sun once

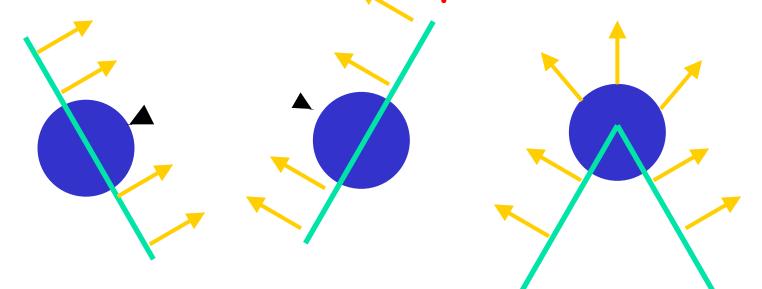
per year

■ The distance from the Sun to the Earth changes by about 3% over a year

What Can I See?

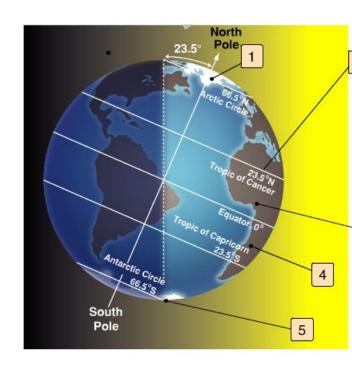
 Earth's rotation and motion around the Sun determine what we can see in the sky

Rotation


- During the day, you only see the Sun and maybe a bit of the Moon
- At night you see the portion of the sky above you with stars "rising" in the east and "setting" in the west

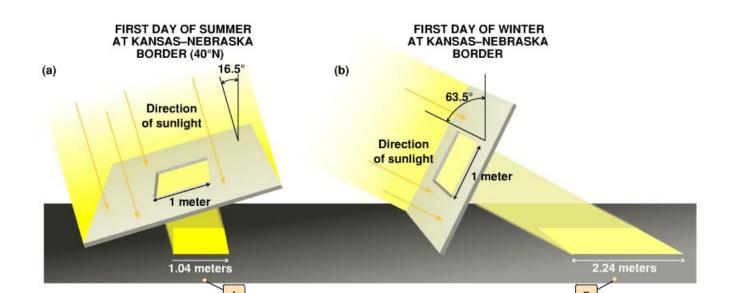
Motion around the Sun

 Six months from now the current sky will be hidden by the Sun and we will see part which is now behind the Sun


What Can I See? (cont.)

- In the northern hemisphere, the North Star is above the horizon all day long
 - The angle of the North Star above the horizon equals your latitude
- In the northern hemisphere, part of the sky around the south celestial pole is never visible

- The Earth's axis is tilted 23.5° with respect to its orbit around the Sun
 - Axis always points in the same direction, toward the north celestial pole
 - It actually moves very slowly over time, precessing like a top


(c) W. W. Norton and Company

Seasons

- Seasons are caused by the tilt of the Earth combined with motion around the Sun
- During our summer, the north celestial pole is pointed towards the Sun
 - The Sun is above the horizon longer
 - We receive more intense light
- During our winter, the south celestial pole is pointed towards the Sun

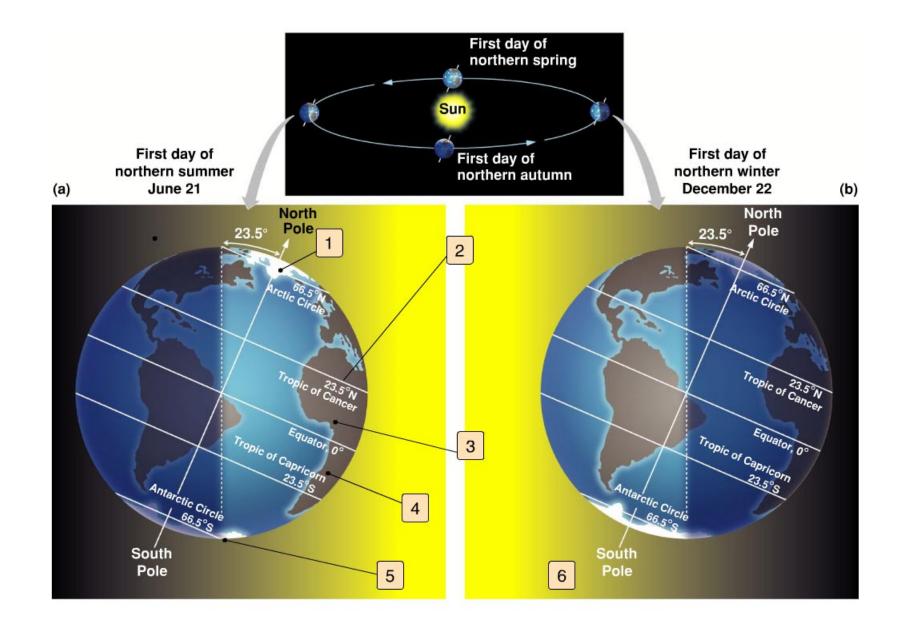
Intensity of Sunlight

- •The amount of light per square meter depends on the angle at which the light hits the surface
- •The amount of light determines the "heating" of the Earth
- •In the summer, the light is more direct and provides more heat

Summer Solstice

- First day of summer, about June 22
 - Sun appears to be 23° north of the equator
 - Passes through the zenith (straight above) of places that are 23° N latitude at noon
 - 23° N latitude is called the Tropic of Cancer
 - All regions within 23° of the North Pole see the sun for the full day
 - 90° 23° = 67° N latitude is called the Artic Circle
 - All regions within 23° of the South Pole see no sunlight for the full day
 - 67° S latitude is called the Antarctic Circle
 - It stays dark at the North and South Poles for 6 months each year

Winter Solstice and Equinoxes


- First day of winter, about December 22
 - Everything is reversed
 - Sun passes through the zenith along the <u>Tropic of</u> <u>Capricorn</u> at noon (23° 5 latitude)

Equinoxes

- Twice a year, the sun passes through the zenith along the equator at noon (0° latitude)
- Vernal Equinox, around March 21
- Autumnal Equinox, around September 21
- 12 hours of light and 12 hours of darkness everywhere

Real World

- Earth's atmosphere fuzzes the edges (figuratively and literally)
- Atmosphere bends light coming from the Sun, allowing us to "see over the horizon" about 18°
 - Sun appears to rise earlier and set later
 - It's light out (twilight) in the morning when the Sun is 18° below the horizon and stays light in the evening until the Sun is 18° below the horizon
 - Effect is most noticeable at the poles complete darkness for only 3 months (rather than 6 months)
 - Last week the scientific station in Antarctica starting receiving flights after the winter break
- June 22 is the longest day, but not the hottest, why?

Length of the Year

- It takes the Earth 365.242199 days to go from one vernal equinox to the next
 - NOT an integer number
 - But the extra is close to $\frac{1}{4}$ = 0.25
- So every 4 years (leap year) we add an extra day to the calendar (Feb. 29)
 - But this is too much (we've added 0.25!)
- So every 100 years (on the century) we don't add the extra day (no leap year)
- But this isn't right either, so every 4th 100 years, we do include the leap year
- This is why 2000 was a leap year

Summary

- The Universe has lots of motion
- The spinning of the Earth causes the rising and setting of the Sun and stars
- The revolution of the Earth around the Sun determines the year
- The tilt of the Earth determines the seasons
- The spinning, revolution and tilt determine the part of the sky which is visible
- You want/need to understand these motions
- Next time, we will look at how the Moon behaves