Gravity and Forces

Sept 9, 2002

1) Review
2) Kepler's Laws
3) Newton's Laws
4) Gravity
5) Examples

Review

- Lots of motion
- The Moon revolves around the Earth
- Eclipses
- Solar
- Lunar
- the Sun, Earth and Moon must all be in a line
- Did you know that all this motion and tilting was happening?

Nicholas Copernicus

- Early people believed the Earth was the center of the Universe and that the Sun, Moon, stars and other celestial bodies revolved around the Earth
- Nicholas Copernicus (1473-1543) was the firs \dagger recorded person to suggest the Earth revolved around the Sun
- He suggested the planets went around in circles
- didn't publish this until the year he died
- Not readily accepted

Brahe and Kepler

- Tycho Brahe (1546-1601)
- Brahe spent decades observing and recording the positions of the planets in the sky
- Johannes Kepler (1571-1630)
- Compared the data from Brahe to Copernicus' theory of planets revolving around the Sun in circular orbits
- The data did NOT support this theory
- What does the scientific method say we should do?

Ellipses

- foci
- Kepler began by assuming orbits were circles, but that didn't work so he tried ellipses
- An ellipses is a flattened out circle
- eccentricity is a measure of how flat it is
- For a circle, the distance from the center is constant, eccentricity $=0$
- For an ellipse, the distance from one focal point to the edge to the other focal point is constant
- An ellipse can be defined by its semimajor axis and its eccentricity

Kepler's First Law

- Kepler's First Law of planetary motion

Planets move in orbits which are ellipses with the Sun at one of the focal points

- This is an empirical theory
- it doesn't explain why
- but, it matched the data
- Earth has a fairly circular orbit
- Earth's eccentricity $=0.017$
- Pluto has a more elliptical orbit
- Pluto's eccentricity $=0.224$

Kepler's Second Law

Planets sweep out equal areas in equal times

- Planets move fastest when they are closest to the Sun
- They move slowest when they are farthest from the Sun

Kepler's Third Law

The square of a planet's orbital period equals the cube of the orbit's semi-major axis

$$
\left(\mathrm{P}_{\text {years }}\right)^{2}=\left(\mathrm{A}_{\mathrm{AU}}\right)^{3}
$$

- Orbital period = time the planet takes to go around the Sun once
- measured in years
- Length of semi-major axis of orbital ellipse
- measured in astronomical units (AU)

But WHY???

- Kepler's Laws
- do an excellent job of describing the motion of the planets
- but they don't tell us why the planets do this
- Science tries to learn how and why
- Two great scientists helped answer these questions
- Galileo Galilei (1564-1642)
- Sir Isaac Newton (1642-1723)
- Newton's Laws of Motion

Newton's First Law

An object at rest will stay at rest,

 an object in motion will remain in motion- ...unless an unbalanced force acts upon it
- The first part seems obvious
- you stay in your seat unless you make yourself get up or someone/something pushes you
- you do not go mysteriously flying out of your seat
- The second part seems less obvious
- you are used to an object sliding across the floor and slowing down
- but it really does want to keep moving
- Now we need some definitions...

Definitions

- Distance (m) and Time (s)
- Speed (m / s)
- how fast you are moving
- Velocity (m / s)
- speed + direction
- Acceleration $\left(\mathrm{m} / \mathrm{s}^{2}\right)$
- how quickly your velocity is changing
- Mass (kg)
- a measure of how much matter an object has
- different than weight, but related
- Inertia
- the amount an object resists changes in motion

Newton's Second Law

An unbalanced force will change an object's motion

- The change in motion (acceleration) will be proportional to the amount of force
- the harder you push the more the motion will change
- the harder you push the greater the acceleration

$$
\mathrm{F}=\mathrm{ma}
$$

$$
\mathrm{a}=\frac{\mathrm{F}}{-}
$$

m

Newton's Third Law

For every action there is an equal and opposite reaction

- Not intuitively obvious
- Examples,
- two carts
- baseball hitting a bat or tennis ball hitting a racket
- Earth pulls on the Moon, Moon pulls on the Earth
- Space Shuttle launch
- gas goes one way, Shuttle the other

Circular Motion

Does a ball traveling around a circle with constant speed feel an acceleration?

Circular Motion (cont)

- YES, a ball moving in a circle is always accelerating

- Consider,
- at the top of the circle the ball is moving to the right
- at the bottom of the circle the ball is moving to the left
- in a short time, the ball completely switches direction, there must be an acceleration
- The speed may not be changing, but the direction is
- remember, velocity is speed and direction
- The acceleration is inward (towards the center of the circle) at all points on the circle
- This is the way planets move around the Sun

Gravity

- All objects with mass feel an attraction to each other due to gravity
- So if you've been strangely attracted to someone sitting next to you, this may be why
- Gravity is the force which...
- holds us to the Earth
- causes a rock to fall towards the ground
- causes the Earth to go around the Sun
- causes the Sun to be pulled towards the center of the Milky Way galaxy, and much more
- Gravity acts without the objects needing to touch
- "action at a distance"

Gravity (cont)

- Gravity acts between 2 objects
- The amount of force depends on
- the mass of the 2 objects

$$
\mathrm{F}=\mathrm{G} \frac{\mathrm{M}_{1} \mathrm{M}_{2}}{\mathrm{r}^{2}}
$$

- the heavier the masses, the greater the force
- the distance between the 2 objects
- the closer together, the greater the force
- a constant of Nature
- Important - BOTH objects feel this force and are attracted to each other
- the Moon is pulled towards the Earth and the Earth is pulled towards the Moon

Gravity and Orbits

- Gravity provides the force which causes the planets to orbit the Sun
- The planets want to fly off into space (Newton's First Law)
- But gravity pulls them towards the
 Sun and changes their direction
- It's even more complicated because the planets pull on each other which causes variations in the orbits

Why doesn't the Earth Fall Into the Sun?

- In fact, it does fall into the Sun every moment of every day
- in order for the Earth is revolve around the Sun, it needs the Sun to pull it inward
- if the Sun didn't pull the Earth inward, it would go flying off into space
- remember an object in motion wants to continue in motion along the same straight path it is going

Measuring the Mass of the Earth

- From Newton, we know $F=m a$ and $F=G \frac{M_{1} M_{2}}{r^{2}}$
- We also know
- All objects are accelerated towards the Earth at the same rate ($a=9.80 \mathrm{~m} / \mathrm{s}^{2}$), from Galileo
- $G=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$ from laboratory measurements
- The radius of the Earth is $r=6.38 \times 10^{6} \mathrm{~m}$, from measuring the curvature of the Earth
- $m=M_{1}$ = mass of an object on the Earth
- $M_{2}=M_{e}$ = mass of the Earth
- From this we measure the mass of the Earth to be $5.98 \times 10^{24} \mathrm{~kg}$
- Pretty heavy, imagine how big of a bathroom scale you would need!

$$
\begin{array}{r}
m a=G \frac{m M_{e}}{r^{2}} \\
M_{e}=\frac{a r^{2}}{G}
\end{array}
$$

Weight

- Weight is a measure of how much an object is attracted to the Earth
- it is really a measure of the gravitational force
- But if you travel to the Moon, your weight will decrease
- this is because the Moon has less mass than the Earth and exerts a smaller force on you
- the same is true if you go to another planet, although if the planet has more mass you will weigh more
- But in these cases your mass stays the same

"Weightlessness" in Orbit

- Astronauts in the Space Shuttle or International Space Station (ISS) appear to be weightless
- but they are still within the Earth's gravitational pull
- They appear weightless because they (along with the shuttle or ISS) are in orbit
- They are "falling" to the Earth all the time, but this is just keeping them in orbit

Summary

- Kepler discovered empirical laws which described the motion of the planets, but didn't explain them
- Newton developed 3 laws of Nature which describe how the planets behave as well as how things on Earth act
- Gravity is the attraction of 2 objects with mass
- it is responsible for the "ballet" of motion throughout the Universe

