Inner Planets (Part II)

Sept. 18, 2002

- 1) Atmospheres
- 2) Greenhouse Effect
- 3) Mercury
- 4) Venus
- 5) Mars
- 6) Moon

Announcements

- Due to technical difficulties, Monday's quiz doesn't count
- An extra credit problem is available on the course web site.
 - It is due Thurs. Sep 19 at 5pm

Review

- Fact vs Theory
- Inner Planets
 - Planet interiors
 - Magnetic fields
- Four Main Processes
 - Tectonics
 - Volcanism
 - Impact Cratering
 - Gradation

Gases – Some Basics

- Lighter gases rise
 - This is really because heavier gases sink and push the lighter gases upward
- Temperature of a gas is really the speed of the molecules
 - Faster gases are hotter
- Sunlight and heat from a planet's interior provide energy to heat atmospheres
 - Sunlight can also break up molecules
- Fast atoms/molecules in the outer atmosphere can escape the planet's gravitational pull
- Planets have a hard time hanging onto hydrogen and helium

Primary Atmospheres

- A planet's original atmosphere comes from the gas of the accretion disk
 - It is composed mainly of hydrogen and helium
 - same stuff the Sun is made of
- If a planet's gravity isn't strong enough, it can't hold onto these light gases
 - They escape and leave the planet without an atmosphere
 - Heating and solar wind help these processes
- This happened to the inner planets
 - We will see later it did not happen to the gas giants

Secondary Atmospheres

- The rocks and planetesimals which combined to form each planet had gases trapped within them
- During various phases of planetary formation, gases were released
 - differentiation caused them to "rise" to the outer surface of the planet
 - primarily carbon dioxide
- Also, comets and meteors which contain water and gas hit the planet
- These gases formed the secondary atmosphere

Solar Heating

- Sunlight warms the atmosphere and surface of planets
 - this heat is radiated back in the infrared
 - wavelength (color) of light depends upon temperature
- Many gases in the atmosphere absorb infrared light
 - these gases let visible light through
 - "greenhouse gases"
 - these gases include carbon dioxide and water vapor
 - also include methane and chlorofluorocarbons (CFCs)

Atmospheric Greenhouse Effect

- The greenhouse gases re-radiate the infrared light
 - much of it goes back towards the planet
 - this adds additional heat to the planet
 - Earth would be much colder it not for this
- Planets exist in an equilibrium between solar heating, greenhouse heating and radiation

Runaway Atmospheres

Greenhouse Effect

- greenhouse heating boils off surface water, increases greenhouse gases and clouds
- additional water vapor increases planet temperature
- boils off more water...
- also, intense sunlight breaks apart water molecules and hydrogen escapes
- probably happened on Venus closer to the Sun

Atmospheric leakage

- lighter (outer) gases lost to space
- less pressure from above, easier for heavier gases to escape
- probably happened on Mars low gravity

Comparative Atmospheres

	Venus	Earth	Mars
Pressure (bars)	92	1.0	0.007
Surface Temperature (K)	737	288	210
Carbon dioxide (%)	96.5	0.033	95.3
Nitrogen (%)	3.5	78.1	2.7
Oxygen (%)	0.00	20.9	0.13
Water (%)	0.02	0.1 to 3	0.03
Argon (%)	0.007	0.93	1.6
Sulfur dioxide (%)	0.015	0.02	0.00

Earth – Just Right

- Massive enough to hold onto atmosphere
- Far enough from the Sun so water was able to remain in solid and liquid form
- Carbon-dioxide
 - erosion exposed fresh materials which absorbs CO₂ to form limestone
 - tiny sea creatures used carbonates to form protective shells which eventually became part of limestone sea beds
 - if all this CO₂ was released, we would have an atmosphere composition similar to Mars and Venus

Layers of Atmosphere

■ The Earth's atmosphere has layers

- layers defined by temperature behavior
- troposphere
- tropopause
- stratosphere
- mesosphere
- thermosphere
- Other planets have layered atmospheres
- We'll see more of this in stars and gas giants

Mercury

- Closest to the Sun 0.39 AU
- Small 2,440 km radius
- Little atmosphere
- Fast revolution year is 88 days long
- Slow spin day is 59 Earth days
- Dense 61% iron
- Used to be volcanically active, but not now
- No moon
- Only visited by Mariner 10 flyby

Venus

- Orbit similar to Earth's 0.72 AU radius
- Size similar to Earth 6,051 km radius
- Mass slightly less than Earth
 - gravitational pull about the same
- Slow rotation a day is 243 Earth days long
- Faster revolution a year is 225 Earth days long
- Evidence of volcanic and tectonic activity

Venus (cont)

- Venus has an intense atmosphere
 - more than 90 times the pressure
 - intense surface temperature 737 K
 - sulfuric acid in the clouds
 - limited water vapor
- No moon
- Mapped by radar (Magellan) and Soviet landers survived a short time
- Many physical characteristics to Earth, but environment is VERY different

Mars

- 4th planet from the Sun 1.52 AU orbital radius
- Half the size of Earth 3,397 km radius
- About 1/10th the mass of Earth
- Light atmosphere 0.7% of Earth's
- Martian day is slightly longer than an

Earth day

- Tilt similar to Earth's
- Year is 1.9 times Earth's
- Has seasonal variations

Mars (cont.)

- Signs of past tectonic, volcanic and gratation processes
 - still going on?
- Has 2 moons, Phobos and Deimos
- Numerous unmanned missions to Mars in 1970s and current
- Planet most likely to be visited next by humans
 - need to bring our own oxygen, food and fuel to get back

Moon

- Small compared to planets (1/100 the mass of the Earth), but large compared to other moons
- Orbit and spin are matched (once a lunar month)
- Composed of similar materials to Earth's mantle
- Volcanic activity long ago (formed maria)
- Essentially no atmosphere
- Surface dominated by cratering
- Only body other than Earth that humans have visited
 - 12 U.S. astronauts from 1969-1972 Apollo 11-17

Pretty!

Intro to Outer Planets

- Planets beyond the asteroid belt
- Gas giants
 - Jupiter
 - Saturn
- Ice giants
 - Uranus
 - Neptune
- Other
 - Pluto

 Outer planets are much further from the Sun than the inner planets

Big, Bigger, Biggest

- Uranus and Neptune
 - about 15 Earth masses
 - radii about 4 times Earth's
- Saturn
 - about 95 Earth masses
 - radius about 9.5 times Earth's
- Jupiter
 - about 318 Earth masses
 - radius about 11 times Earth's