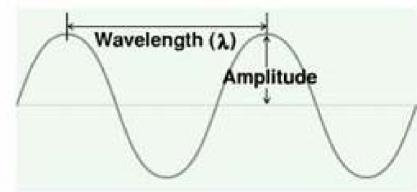


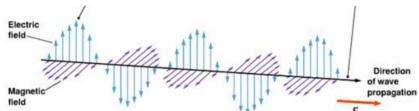
October 14, 2002

- 1) Exam Review
- 2) Introduction
- 3) Light Waves
- 4) Atoms
- 5) Light Sources



- You know of many types of waves
 - water, sound, seismic, etc
- A wave is something oscillating back and forth
- Waves has certain properties
 - amplitude how large the oscillation
 - speed how fast the wave is moving
 - period time between wave crests
 - wavelength distance between wave crests
 - frequency number of wave crest passing by each second

Period/Frequency/Wavelength


- We can relate a wave's period, frequency and wavelength
 - period (P)
 - frequency (f)
 - wavelength (λ)

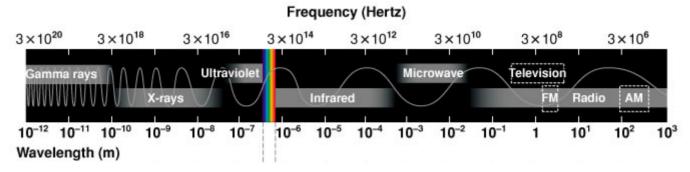
$$f = 1/P$$

 $\lambda = v/f$ (v = velocity)

Electromagnetic Waves

 Electromagnetic waves are oscillating electric and magnetic fields

- Light is un electromagnetic wave
- Unlike mechanical waves, does not travel through a medium
- Speed = speed of light
 - $c = 3.0 \times 10^8 \text{ m/s}$


Color of Light

- In the visible spectrum, different wavelength means different color
 - rainbow/prism effect
 - caused by different wavelengths
 - "blue" is a shorter wavelength
 - "red" is a longer wavelength
 - "white" light is a combination of all colors

Wavelength of Light

- Different types of "light" correspond to different wavelengths
 - gamma rays (10⁻¹⁰ m)
 - x-rays (10⁻⁹-10⁻⁸ m)
 - ultraviolet light (10⁻⁷ m)
 - visible light (10-6 m)
 - infrared light (10⁻⁶-10⁻⁴ m)
 - microwaves (10⁻³ m)
 - radio waves (10⁻¹-10³ m)

Light as Particle and Energy

- Light is an electromagnetic wave
- Light is also a particle
 - called a photon
- Light is a form of energy
 - $E = hc/\lambda$
 - $h = a constant (6.63 \times 10^{-34} joules/sec)$
 - Light is the primary method of transferring energy around the Universe
 - e.g. light from the Sun heats the Earth's atmosphere

Relativity

- Theoretical and experimental evidence showed light (and other things) didn't exactly follow Newton's Laws
 - OK when things are moving slow, but breakdown when things are moving fast
- Albert Einstein developed the <u>Special Theory of</u> <u>Relativity</u>
- Relativity has a number of consequences
 - No. 1: Nothing moves faster than the speed of light
 - $\sim 3.0 \times 10^8 \text{ m/s}$
 - Does NOT say "everything is relative"
 - Does predict time dilation and length contraction
- Relativity has withstood numerous experimental tests

Atoms

- (a)—Parts of an atom
 (b)—"Solar system" model
 (c)—Quantum mechanical model

 Reutron (neutral)
 —Proton (+)

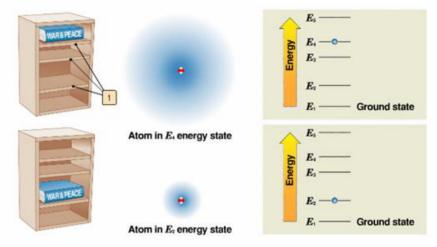
 Electron (-)

 2

 3
- nucleus protons and neutrons
- electrons surround the nucleus
- number of protons and electrons determines the type of atom (e.g. hydrogen, helium, oxygen, nitrogen,...)

Energy levels

- electrons in an atom can only have very specific energies
 - like a set of stairs, you can be on one stair or the next, but not in between
- each type of atom has a specific set of energy levels
 - hydrogen's levels are different than oxygen which is different than nitrogen

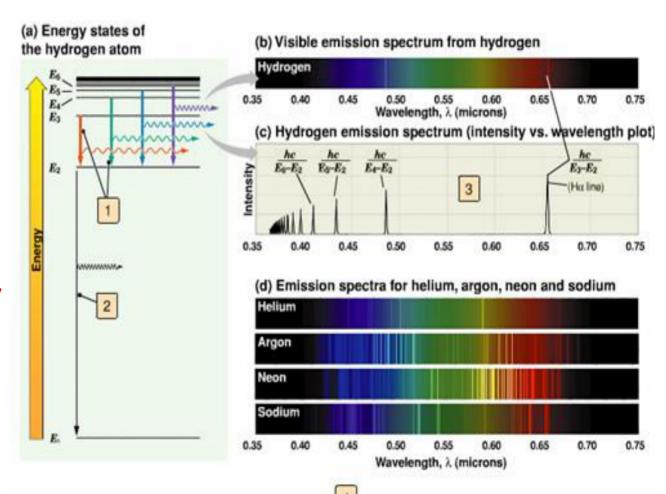

Excitation and Emission

Electrons can be excited to a higher energy

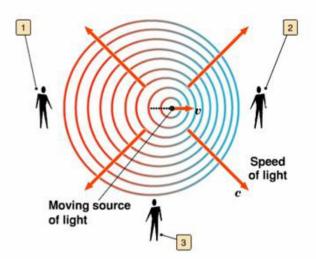
level

collisions with other atoms

absorption of a photon



- Electrons can be un-excited be emitting a photon
 - electron drops from a higher to a lower energy level
 - photon is a very specific wavelength


Different Atoms/Different Colors

- Each atom has it's own set of energy levels and it's own set of light emissions
- This can be used to identify atomic composition

Doppler Effect

- Motion affects waves
 - motion of the source or receiver
 - example: sound of a passing siren
- Blue-shift
 - motion towards each other will shorten wavelength
- Red-shift
 - motion away from each other will lengthen wavelength
- Amount of wavelength change is related to the velocity
- Can be used to measure relative speeds

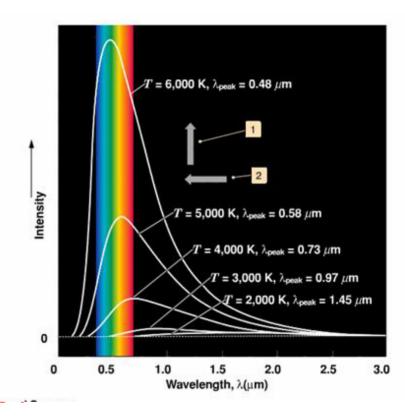
Temperature and Light

- Hot objects give off light
- Temperature is a measure of how fast the atoms/molecules are moving
 - hot atoms move faster than cooler atoms
 - faster movement means more collisions
- Collisions of atoms can convert energy to light
 - This is how an incandescent light bulb glows

Temperature and Light

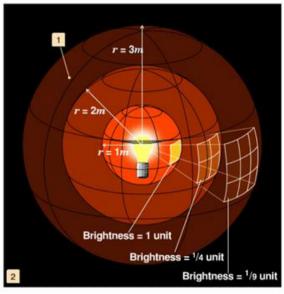
- Hotter objects give off more light
 - luminosity is proportional to temperature raised to the fourth power

$$L \propto T^4$$


- e.g. if you double an object's temperature, the luminosity goes up by a factor of 16 (24)
- Hotter objects give off bluer light
 - the wavelength is proportional to the inverse temperature

$$_{\lambda} \propto 1/T$$

 e.g. if you double an object's temperature, the wavelength drops in half


Blackbody Radiation

- Light radiated due to temperature, follows a pattern
 - blackbody radiation
 - all objects radiate light
- This can be used to measure the surface temperature of an object
 - this is how we know our
 Sun has a temperature of
 5,800 K

Intensity and Luminosity

- Luminosity is the total amount of light given off by an object
- Intensity is how much light we observe
 - if an object radiates light evenly in all directions...
 - the intensity goes as $1/r^2$ (r = distance from the source) $I = L/4\pi r^2$
 - think of a sphere
- We can use the observed intensity to measure the distance if we know the luminosity

Sources of Light

- Several primary sources of light
 - reflection of light from another source
 - how we see most objects in this room
 - how we see planets, the Moon, asteroids, etc
 - creation of light from energy
 - glow of hot materials or from fusion
 - how the Sun glows
 - how we see comets
 - atomic emission of photons
 - could be from absorption
 - how we identify gases on a remote body