

Analyzing Starlight

October 16, 2002

- 1) Blackbody radiation
- 2) Properties of Stars
- 3) Measuring the Properties of Stars
- 4) H-R diagram

Review

- Properties of waves
 - wavelength, frequency, period, speed
- Light is an electromagnetic wave
- Atoms/energy levels
 - absorption and emission of photons
- Doppler effect
- Temperature and light
 - all objects emit light
 - hotter = bluer & brighter

Temperature and Light

- Hot objects give off light
- Temperature is a measure of how fast the atoms/molecules are moving
 - hot atoms move faster than cooler atoms
 - faster movement means more collisions
- Collisions of atoms can convert energy to light
 - This is how an incandescent light bulb glows

Temperature and Light

- Hotter objects give off more light
 - luminosity is proportional to temperature raised to the fourth power

$$L \propto T^4$$

- e.g. if you double an object's temperature, the luminosity goes up by a factor of 16 (24)
- Hotter objects give off bluer light
 - the wavelength is proportional to the inverse temperature

$$_{\lambda} \propto 1/T$$

 e.g. if you double an object's temperature, the wavelength drops in half

Intensity and Luminosity

- Luminosity is the total amount of light given off by an object
- Intensity is how much light we observe
 - if an object radiates light evenly in all directions...
 - the intensity goes as $1/r^2$ (r = distance from the source) $I = L/4\pi r^2$
 - think of a sphere
- We can use the observed intensity to measure the distance if we know the luminosity

Blackbody Radiation

- Light radiated due to temperature, follows a pattern
 - blackbody radiation
 - all objects radiate light
- This can be used to measure the surface temperature of an object.
 - this is how we can measure the temperature of the Sun

Temperature of the Sun

- We learned that $\lambda \propto 1/T$
- Really, it is λ = (2900 μ m K)/T we can rewrite as T = (2900 μ m K)/ λ
 - μ m = micron = 1 × 10⁻⁶ m
 - K = Kelvin (a measure of temperature)
 - K = 0 is absolute zero, the coldest temperature possible
 - K = 273 is the freezing point of water (32 °F)
 - K = 373 is the boiling point of water (212 °F)
 - the Sun's light peaks at $\lambda = 0.5 \mu m$
- So, T = $(2900 \mu \text{m K})/0.5 \mu \text{m} = 5.800 \text{ K}$
- So the surface temperature of the Sun is 5,800 K

Sources of Light

- Several primary sources of light
 - reflection of light from another source
 - how we see most objects in this room
 - how we see planets, the Moon, asteroids, etc
 - creation of light from energy
 - glow of hot materials or from fusion
 - how the Sun glows
 - how we see comets
 - atomic emission of photons
 - could be from absorption
 - how we identify gases on a remote body

Observing Stars

- We study stars by observing their light
- What can we learn about stars?
 - Brightness/luminosity
 - Distance from us
 - Velocity (has fast/what direction)
 - Mass
 - Size
 - Composition
- Ultimately, we would like to find common characteristics between stars and learn the how and why of them

Stereoscopic Viewing

- To determine distance to an object, we view it from 2 different places
 - see how it moves with respect to far background
 - this is how our eyes work
- In astronomy, we view stars from different parts of the Sun's orbit
 - close stars will move a lot, far stars will move a little

4

Measuring Distance

By measuring the angle by which the star "moves", we can determine the distance

distance(parsecs) =
$$\frac{1}{\text{angle(arcsecs)}}$$

- Angles
 - 1 degree = 60 arcminutes
 - 1 arcminute = 60 arcseconds
 - 1 arcsecond = 1/360th degree
- Distance
 - 1 parsec =3.26 lightyears

4

Measuring Luminosity

- We measure a star's brightness by how much light we see
- We have just measured its distance
- Therefore, we can measure luminosity brightness = luminosity/ $4\pi r^2$ (r = distance to star) luminosity = brightness × $4\pi r^2$
- We have measured the luminosity of many nearby stars
 - Our Sun is more luminous than most
 - Least luminous is 0.0001 times our Sun
 - Most luminous is 10⁶ times our Sun

Measuring Temperature

- We use the colors of light to determine temperature
 - measure light through a blue filter and a yellow-green filter

ratio of amount of light allows us to measure

the temperature

- like we did for the Sun
- most stars are cooler than our Sun

Measuring Size

 Once we know the luminosity and temperature, we can measure the size

```
luminosity = surface area x constant x T^4 surface area = 4\pi r^2 (r = radius of star) luminosity = 4\pi r^2 x constant x T^4
```

- we can solve for radius and calculate it
- Most stars are smaller than the Sun
- Smallest stars are 0.01 times the size of the Sun
- Largest stars at several thousand times the size of the Sun

Class

Classification of Stars

- Classify stars by temperature
- Classes: O, B, A, F, G, K, M
 - Oh, Be A Fine Guy/Gal, Kiss Me

- O is the hottest stars
- M are the coolest stars
- The Sun is aG class

Determining the Mass

- Determine the mass from the effects of gravity
- Use binary star systems
 - two stars orbiting each other
 - they follow ellipses with a shared focal point (Kepler's Laws)
 - measure velocities
- Visual measurement
 - see both stars, use Doppler shift
- Eclipsing binary
 - one passes in from of the otherand brightness changes

Stellar Composition

- Stars are primarily composed of hydrogen and helium
 - some other trace elements
- Here's a sampling of composition

<u>Element</u>	Percent by Number	Percent by Mass
Hydrogen	92.5%	74.5% .
Helium	7.4%	23.7% .
Oxygen	0.064%	0.82%
Carbon	0.039%	0.37%
Neon	0.012%	0.19%
Nitrogen	0.008%	0.09%
Iron	0.003%	0.13%

H-R Diagram

- Einar Hertzsprung
- Henry Russell
- Compiled data on stars
- Plotted luminosity vs temperature
- Astronomers
 consider this the
 most important
 plot

