
The Sun

October 21, 2002

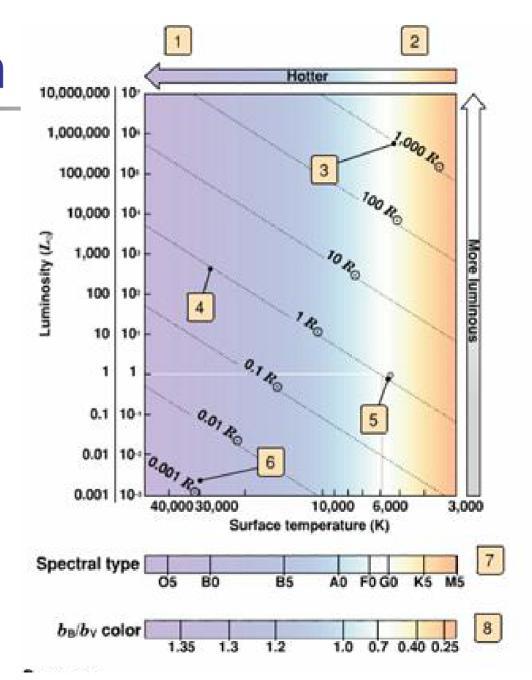
- 1) H-R diagram
- 2) Solar Structure
- 3) Nuclear Fusion
- 4) Solar Neutrinos
- 5) Solar Wind/Sunspots

Review

- Blackbody radiation
- Measuring stars
 - distance
 - luminosity
 - brightness and distance
 - temperature
 - wavelength of light
 - Size
 - luminosity and temperature
 - mass
 - interaction with gravity

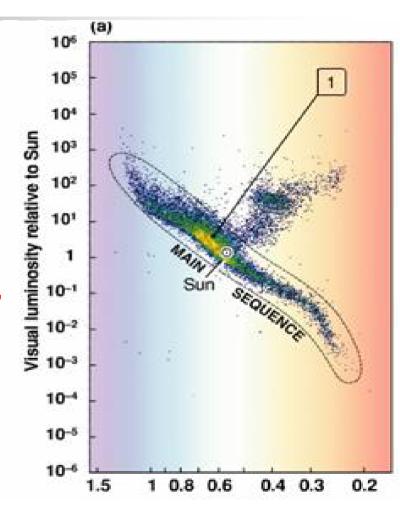
How to Measure Velocity

- The light put out by stars contains absorption lines
 - caused by atoms in star's atmosphere absorbing certain wavelengths of light
- These lines are shifted by Doppler effect
 - if star is moving relative to us
 - can measure its velocity towards or away from us

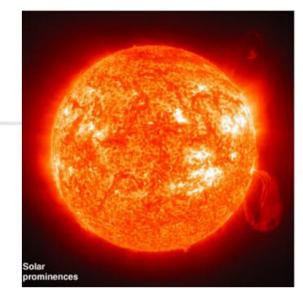

Stellar Composition

- Stars are primarily composed of hydrogen and helium
 - some other trace elements
- Here's a sampling of composition

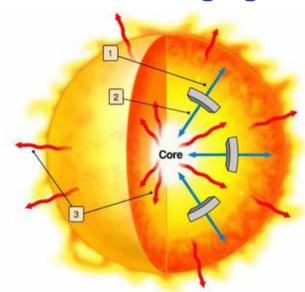
<u>Element</u>	Percent by Number	Percent by Mass
Hydrogen	92.5%	74.5% .
Helium	7.4%	23.7% .
Oxygen	0.064%	0.82%
Carbon	0.039%	0.37%
Neon	0.012%	0.19%
Nitrogen	0.008%	0.09%
Iron	0.003%	0.13%


H-R Diagram

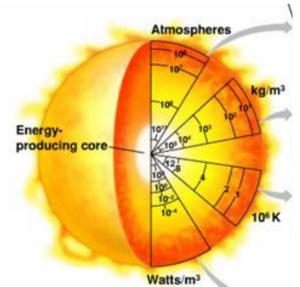
- Einar Hertzsprung
- Henry Russell
- Compiled data on stars
- Plotted luminosity vs temperature
- Astronomers
 consider this the
 most important
 plot


Main Sequence

- 90% of all stars are grouped together
 - Main Sequence stars
 - share similar properties
- Once you know a main sequence star's temperature, you know a lot about it
 - luminosity, distance, mass, size
- The mass of a star determines its place on the main sequence
 - and its future fate


Our Sun

- Classification: G2
- Mass: 1.99x10³⁰ kg
- Radius: 696,000 km
- Luminosity: 3.85x10²⁶ Watts
- 99% of the mass of the Solar System
- A main sequence star


A Matter of Balance

- Equilibrium
 - a static state everything is balanced not changing
- Gravity
 - pulls atoms of Sun inward
- Pressure
 - pushes atoms of Sun outward
- Sun maintains constant size
 - in equilibrium
 - if gravity was stronger than pressure, the Sun would shrink
 - if pressure was stronger than gravity, the Sun would grow
- Each point within the Sun is in equilibrium

- As you move inward through the Sun, the pressure increases
- Increasing pressure means increasing temperature
 - higher temperature means atoms are moving faster
 - surface temperature = 5,800 K
 - core temperature =15,000,000 K

Nuclear Fusion

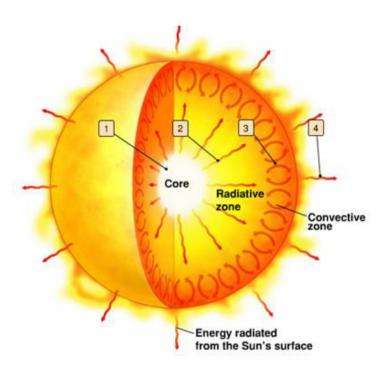
- The Sun is powered by nuclear fusion
 - two nuclei combining to form a single nucleus and release energy
- Hydrogen burning
 - conversion of hydrogen into helium
 - ${}^{1}H + {}^{1}H + {}^{1}H + {}^{1}H \rightarrow {}^{4}He$
 - four hydrogen atoms are 1.007 times the mass of one helium atom
- \blacksquare E = mc²
 - mass = energy
 - this process converts some of the mass of the Sun into energy
 - what form of energy?

Fusion in the Sun

- Nuclei must get close together to fuse
 - only occurs in Sun's interior: pressure & density must be incredibly high
- Emits neutrinos and photons
 - neutrinos easily escape
 - photons collide with atoms in Sun
 - take ~100,000 years to escape the Sun
- Heat transfer
 - conduction atoms bumping into each other
 - radiation emission of light
 - convection atoms "rising" towards the exterior
- Radiation is the main source of heat/energy transfer from the interior of the Sun

Solar Interior (Part II)

Core


central area where fusion occurs

Radiation zone

outside of core where heat transferred by radiation

Convection zone

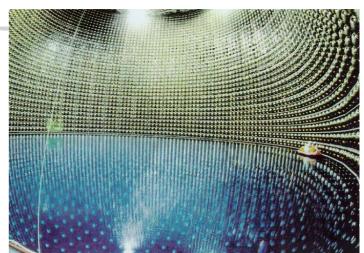
 next layer where heat transferred by convection

Neutrinos from the Sun

- Neutrinos are very elusive particles
 - very rarely interact with matter
 - escape the Sun's interior easily
 - pass through the Earth easily
 - pass through you easily
 - ~4x10¹⁴ neutrinos pass through you each second
- We can use neutrinos to study the Sun
 - need a massive detector
 - need to take data for a long time

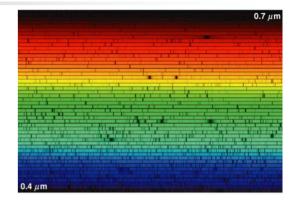
Nobel Prize in Physics - 2002

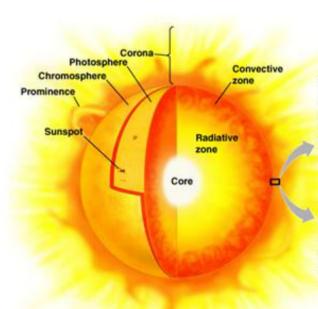
- Ray Davis, Masatoshi Koshiba, and Riccardo Giacconi
 - neutrino astrophysics
- Ray Davis measured the neutrinos from the Sun (1960's-1980's)
 - found only 1/3 the expected neutrinos
 - solar model wrong?
 - withstood many, many tests
 - neutrino model wrong
 - something happening to neutrinos?


Super-Kamiokande and SNO

Super-Kamiokande

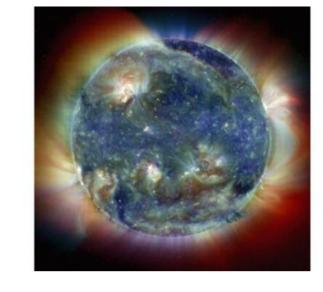
- Japanese experiment to measure solar neutrinos
- confirmed 1/3 neutrinos
- used 11,000 phototubes in a tank of 50,000 tons of ultrapure water
- took first pictures of Sun with neutrinos

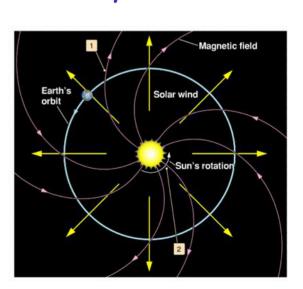

SNO - Sudbury Neutrino Observatory


- found that solar neutrinos were changing on their way to Earth
- all the neutrinos were there solar model correct

Solar Surface and Atmosphere

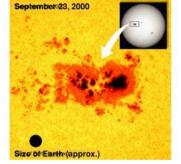
- Solar "surface" photosphere
 - 500 km thick
- Atmosphere
 - absorbs some photons creates
 absorption lines in light from Sun
- Chromosphere
 - above the photosphere
 - about 100 km thick
- Corona
 - above the chromosphere
 - very hot 1,000,000 K
 - very large extends millions of kilometers

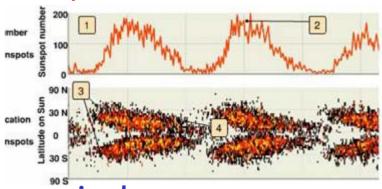



Solar Magnetic Fields

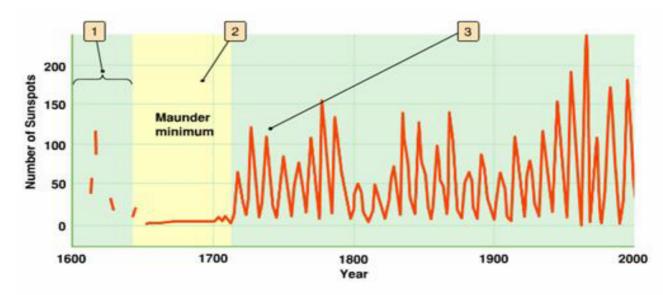
- The Sun's magnetic field is very complicated
- (b)
- It has magnetic "tubes" through which particles travel
 - like a water hose
 - each end of the tube is connected to the Sun's surface
- Coronal holes
 - where magnetic field points outward and particles escape
- Magnetic field is constantly changing
 - partially due to Sun's rotation
 - occasionally flips direction

Solar Wind


- Particles escape the Sun through coronal holes
 - travel outward from the Sun
 - responsible for comet's tail and for blowing away primary atmospheres of inner planets
 - pushes interstellar dust out of the Solar System
- Solar wind changes as Sun rotates
- Effects Earth
 - satellites
 - Aurora Borealis



Sunspots


- Sunspots are cooler parts of the solar surface
 - most visible solar "structure"
- Caused by magnetic field loops
 - found in pairs
 - shift around with field
- Sunspot cycle
 - Sunspots follow an 11-year period
 - magnetic field changes over 11 years and then flips over

4

Variations in the Sunspot Cycle

- The sunspot cycle varies
 - sometimes more intense than others
 - some long periods with almost no sunspots
 - Maunder minimum 1645-1715
 - cooler than normal in Europe

